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An execution result is explained by alternating
threads... usually

[Xx] =[y]l=0
—> [x]:=1 a := [X] b :=[y]

—> [yl :=1— c:=[x]
a=b=1,c=0
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C++ allows it due to a (non-atomic) data race

Non-atomic
accesses

[Xx]=1[yl=0
ixl:=1 || a:=[x1| b:=1ly]
[yl:=1 c := [x]

a=b=1,c=0

Standard for Programming Language C++, 6.8.2.1.20:
“Any such data race results in undefined behavior.”




No races on atomics

[X]rlx =]

[X] =1yl =0
Q= [X]rlx

[y]rlx =1



No races on atomics

[X] =[yl=0
[X]rlx "= 1 Q= [X]rlx b "= [y]rlx
Constants [yl'x =1 C 1= [x]™
Defined in header <atomic>
Value

a=b=1,c=07?

memory order relaxed



No races on atomics but the outcome is still allowed

[X] =1yl =0
[X]rlx =1 Q= [X]rlx b "= [y]rlx
[y]rlx =1 C'= [X]rlx

a=b=1,c=0



C++ memory model
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C++ memory model is weak
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C++ memory model is weak as it allows optimizations

[X] =1yl =0
[X]rlx =1 Q= [X]rlx "= [y]rlx

[y]rlx "= 1 "= [X]rlx

{ ..., (a=b=c=1), ... (a=b=1, c=0), ... }



C++ memory model is weak as it allows optimizations

xI=lyl=0 [ €&
[X]rlx =1 Q= [X]rlx . X
[y]rlx "= 1 "= [X]rlx

{ ..., (a=b=c=1), ... (a=b=1, c=0), ... }



C++ memory model is weak as it allows optimizations




Weak behavior can be controlled with access modes

[x]I =1yl=0
[X]sc:=1 a = [x]s b :=[y]™
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Weak behavior can be controlled with access modes

[X] =

[X]sc:=1 a .= [X]s€ b := [y]™
[y]rlx f— 1 [X]sc



Weak behavior can be controlled with access modes
but the effect Is not obvious

[X] =

[X]sc:=1 a = [x]s b := [y]™
[y]rlx f— 1 [X]sc

Q

POWER



C++ solution: strengthen access mode everywhere

[X]=[y]=0
[X]sc:=1 a = [X]s¢ b :=[y]*

[yl*c:=1 C := [X]s¢



OCaml MM: reasonable rules for racy programs

[X]=[y]=0
[X]et:=1 a = [x]zat b:= [y]r

[y]re:=1 C := [x]a
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OCaml MM: reasonable rules for racy programs

[X]=1[y]l=0
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OCaml MM: reasonable rules for racy programs
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= [xPti=1) a:=[x]* |b:=[y]"|
[yl :=1| c:=I[x]*
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OCaml MM: reasonable rules for racy programs

Local data race
freedom:

result of reading x
[x] =1[yl=0 doesn’t depend on

= [x]at:= 1 a:=[x]x [b:=[yl"| the race ony
[y]na =1 I:>C o [X]at




OCaml MM guarantees should be implemented

[x]=1yl=0
[X]:=1 a = [x]*< b :=[y]™
[y]™:=1 C := [x]s

a=b=1,c=0
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OCaml MM guarantees should be implemented

[compile(Prog)].s,
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OCaml MM guarantees should be implemented
by providing a correct compilation scheme

[compile(Prog)].s,

[Prog]OCamI MM
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We’ve proved compilation correctness from OCaml

MM to Power

OCaml MM

X86

ARM
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We've proved compilation correctness from OCaml
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We’ve proved compilation correctness from OCaml

MM to Power using IMM

OCaml MM

X86

IMM

Power

ARM
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Another execution representation is needed
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Consider the execution as a graph

R2*(x,1)  R™(y,1)
[X] = [yl = 0
[X]et:=1 a = [x]a b = [y]na rf//’ r:g,/

e /
e 4
Y 7

w2t (x,1)  w*?(y,1) R¥(x,0)

[y]ra:=1 C := [x]a

a=b=1,c=0

Jprogram order ,reads — from
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A permission of execution Is determined by its graph

R2*(x,1)  R™(y,1)
[X] = [yl = 0
[X]et:=1 a = [x]a b = [y]na rf//’ r:g,/

7 /

7 /
\ 2

[Y]”a =1 C:= [X]at 7/ v
Wat(X, 1) wna(y’ 1) Rat(X, 0)
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A permission of execution Is determined by its graph

[x] =[yl=0
[X]at = 1 a .= [X]at b "= [y]na I'j;//

7
e

[y]re ;=1 C := [x]°t
OCaml MM: a—=b=1-€=0

A

4 /s

R2*(x,1)

7/
/
rf.
Vd
Vv
7/

wat(x,1)  W*3(y,1)

Rna(y, 1)

/
/

R2*(x, 0)

OMM: no cycles made of po, rf and
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Compilation correctness in terms of graphs

[COmpile(Prog)]lMM

[Prog]OCamI MM
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Compilation correctness in terms of graphs

[compile(Prog)],um Graphs,,,,,(compile(Prog))

[Prog]OCamI MM C-:'raphSOCaml MM(PrOg
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The identity compilation scheme won'’t work

compile(Prog) = [na — rlx, at = sc]Prog
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The identity compilation scheme won'’t work

compile(Prog) = [na — rlx, at = sc]Prog
RSC(X, 1) erx(y, 1)

[Xx] =[y]=0 r
[X]I:=1 = a:=[x]* | b:=[yl™ ri,/ rf,,/
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The identity compilation scheme won'’t work

compile(Prog) = [na — rlx, at = sc]Prog

[x] =[y]l=0
[X]sc:=1 a = [x]sc
[y]rlx — 1

a=b=1,c=0

R3¢(x,1)
b= [y]™ rf,” rf.’
C := [x]s 2 .’

erx (y, 1)

\4

R%¢(x, 0)

IMM: can have a cycle made of po, rf and
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The identity compilation scheme won'’t work

£

G ra'phSOCamI MM(PrOg)

WeS(x, 1)

R%¢(x, 1)

7 1
g Ve
. " 4
rd 7/
g 7/
i rf
rd 7
7 7
>
¥ f

wrlx (y’ 1)

R*(x, 0)

erx (y, 1)'

Graphs,,,,,(compile(Prog)
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Observed writes should remain so

R3¢(x, 1)

/s
Ve

/
rf.’ rf.’

Ve 7

e Ve

WSC(X,]_) erx(y,l)

erx ()/; 1)

\4

R3¢(x, 0)
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Observed writes should remain so

R=1 7 gc(xv 1)
rﬁ// rf.’
wSC(X’ 1) erx(y7 1)

erx ()/; 1)

\4

R3¢(x, 0)

19



Observed writes should remain so

R=1 7 gc(xv 1)
rﬁ// rf.’
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erx(y7 1)
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Observed writes should remain so
= graph should have no cycles with rb

R=1 7 gc(xv 1)
ri// rf.’
wSC(X’ 1) erx(y7 1)

erx(y, 1)
/1 Xx=0X
R%¢(x, 0)
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“Release” known writes and “acquire” them next

RSC(X, 1) erx(y’ 1)

7 7/
e /
e 7/

rf.’ rf.

Y \ 2V v

WS¢(x,1)  Wr*(y,1) R®¢(x,1)

-~ - /‘r
— -
— -—
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“Release” known writes and “acquire” them next

XxX=1v
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“Release” known writes and “acquire” them next

XxX=1v
RSC(X, 1) erx(y’ 1)

Ve 7

rf.’ rf.

/7

/// l /// A 4
WS¢(x,1)  Wr*(y,1) R®¢(x,1)

-~ - /‘r
— -
— -—
.
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“Release” known writes and “acquire” them next

XxX=1v
R¢(x, 1) erx(% 1) -1,

Ve 7

rf.’ rf.

/7

e ¢
WS¢(x,1)  Wr*(y,1) R®¢(x,1)

-~ - /‘r
— -
— -—
.
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Implemented with release and acquire fences
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Implemented with release and acquire fences

compile(Prog) = [na — rlx, at = sc]Prog + Fences™ + Fencesa«

[x] =[y]=0 R%¢(x;, 1)
[X]<:=1 | a:=[x]c | b:=[y]™ RO
rf,” Frel rf.”
fencer fenceaca 0
[y]rlx ‘= 1 C = [X]SC WSC(X7 1) "‘II'].X(-)/7 1)

erx (y7 1)

-
Ve
7/
7/

Facq

l

R%¢(x, 0)
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Implemented with release and acquire fences

compile(Prog) = [na — rlx, at = sc]Prog + Fences™ + Fencesa«

[x] =[y]=0 RS°(x,1)  R*™™(y,1)
[XI:=1  a:=[x]< | b:=[y]™ R 7
rf.” Frel rf,” Facd
fencere! fenceac l

[y]x:=1 C 1= [Xx]s¢ rSC(X7 1) erx(_)/, 1) RSC(X, O)

IMM: can have a cycle made of po, rf and
iIf there is rf without sc and fences 21




An IMM-inconsistent behavior i1s now prohibited

G raphSOCamI MM(PrOg)

RSC(X, 1) erx(% 1)
rf,” prel rf,” Facd
We(x1)  WE(y1)  R<(x0)
ey et
r

Graphs,,,,(compile(Prog))




The resulting scheme prohibits unwanted behaviors

OCaml MM IMM

r = [x|*® r = [x]**

[x]** := v | fence? ¥l [x|** = v
r = [x]* fence®**?; r = [x]5¢
[x]2* := v | fence®*%;exchange®°(x, V)
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Takeaway

e Compilation scheme
from OCaml MM to IMM

e Proved to be correct

e Formalized in Coq

Machine-verified
compilation scheme from
OCaml MM to Power

https://github.com/weakmemory/imm
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