Compilation of OCaml memory model to Power

Egor Namakonov, Anton Podkopaev

NATIONAL RESEARCH
UNIVERSITY

S
N MAX PLANCK INSTITUTE
- FOR SOFTWARE SYSTEMS

An execution result is explained by alternating
threads

[Xx] =[y]=20
[X] :=1 a = [X] b :=[y]

[yl ;=1 C := [X]

An execution result is explained by alternating
threads

[Xx] =[y]=20
[X] :=1 a = [X] b :=[y]

[yl:=1 c:=[x]
17

Q)
Il
O
Il
0O
Il

An execution result is explained by alternating
threads

[Xx] =1[y]l=0
— [x]:=1 a = [x] b :=[y]
[yl:=1 C :=[x]

17

Q)
Il
O
Il
0O
Il

An execution result is explained by alternating
threads

[x] =[y]l=0
— [x]:==1l—>a:=[x] b:=Iy]
[yl:=1 c:= [x]

17

Q)
Il
O
Il
0O
Il

An execution result is explained by alternating
threads

[Xx] =[y]l=0
—> [x]:=1 a := [X] b :=[y]
—> lyl:=1 c := [x]

a=b=c=1"7

An execution result is explained by alternating
threads

[x] =[y]l=0
—> [x]:=1 a:=[xl—> b:=Iy]
—> lyl:=1 c := [x]

a=b=c=1"7

An execution result is explained by alternating
threads

[Xx] =[y]l=0
—> [x]:=1 a := [X] b :=[y]
—> [yl :=1— c:=[x]

a=b=c=1"7

An execution result is explained by alternating
threads

[Xx] =[y]l=0
—> [x]:=1 a := [X] b :=[y]

—> [yl :=1— c:=[x]

a=b=c=1

An execution result is explained by alternating
threads

An execution result is explained by alternating
threads

An execution result is explained by alternating
threads

An execution result is explained by alternating
threads

[Xx] =[y]l=0
—> [x]:=1 a := [X] b :=[y]
—> lyl:=1 c := [x]

a=b=1,c=07

An execution result is explained by alternating
threads

[x] =[y]l=0
—> [x]:=1 a:=[xl—> b:=Iy]
—> lyl:=1 c := [x]

a=b=1,c=07

An execution result is explained by alternating
threads

[Xx] =[y]l=0
—> [x]:=1 a := [X] b :=[y]

—> [yl :=1— c:=[x]

a=b=1,c=07

An execution result is explained by alternating
threads... usually

[Xx] =[y]l=0
—> [x]:=1 a := [X] b :=[y]

—> [yl :=1— c:=[x]
a=b=1,c=0

C++ allows it due to a (non-atomic) data race

C++ allows it due to a (non-atomic) data race

C++ allows it due to a (non-atomic) data race

Non-atomic
accesses

[Xx]=1[yl=0
ixl:=1 || a:=[x1| b:=1ly]
[yl:=1 c := [x]

a=b=1,c=0

C++ allows it due to a (non-atomic) data race

Non-atomic
accesses

[Xx]=1[yl=0
ixl:=1 || a:=[x1| b:=1ly]
[yl:=1 c := [x]

a=b=1,c=0

Standard for Programming Language C++, 6.8.2.1.20:
“Any such data race results in undefined behavior.”

No races on atomics

[X]rlx =]

[X] =1yl =0
Q= [X]rlx

[y]rlx =1

No races on atomics

[X] =[yl=0
[X]rlx "= 1 Q= [X]rlx b "= [y]rlx
Constants [yl'x =1 C 1= [x]™
Defined in header <atomic>
Value

a=b=1,c=07?

memory order relaxed

No races on atomics but the outcome is still allowed

[X] =1yl =0
[X]rlx =1 Q= [X]rlx b "= [y]rlx
[y]rlx =1 C'= [X]rlx

a=b=1,c=0

C++ memory model

[X] =1yl =0
[X]rlx =1 Q= [X]rlx b "= [y]rlx

[y]rlx — 1 C = [X]rlx

C++ memory model

[X] =1yl =0
[X]rlx =1 Q= [X]rlx b "= [y]rlx

[y]rlx =1 C'= [X]rlx

{ ..., (a=b=c=1), ... (a=b=1, c=0), ... }

C++ memory model is weak

[X] =1yl =0
[X]rlx =1 Q= [X]rlx b "= [y]rlx

[y]rlx "= 1 C'= [X]rlx

{ ..., (a=b=c=1), ... (a=b=1, c=0), ... }

C++ memory model is weak as it allows optimizations

[X] =1yl =0
[X]rlx =1 Q= [X]rlx "= [y]rlx

[y]rlx "= 1 "= [X]rlx

{ ..., (a=b=c=1), ... (a=b=1, c=0), ... }

C++ memory model is weak as it allows optimizations

xI=lyl=0 [€&
[X]rlx =1 Q= [X]rlx . X
[y]rlx "= 1 "= [X]rlx

{ ..., (a=b=c=1), ... (a=b=1, c=0), ... }

C++ memory model is weak as it allows optimizations

Weak behavior can be controlled with access modes

[x]I =1yl=0
[X]sc:=1 a = [x]s b :=[y]™

[y]rlx =1 C = [X]sc

Weak behavior can be controlled with access modes

[X] =

[X]sc:=1 a .= [X]s€ b := [y]™
[y]rlx f— 1 [X]sc

Weak behavior can be controlled with access modes
but the effect Is not obvious

[X] =

[X]sc:=1 a = [x]s b := [y]™
[y]rlx f— 1 [X]sc

Q

POWER

C++ solution: strengthen access mode everywhere

[X]=[y]=0
[X]sc:=1 a = [X]s¢ b :=[y]*

[yl*c:=1 C := [X]s¢

OCaml MM: reasonable rules for racy programs

[X]=[y]=0
[X]et:=1 a = [x]zat b:= [y]r

[y]re:=1 C := [x]a

OCaml MM: reasonable rules for racy programs

[Xx]=1[yl=0
> [x]et:=1 a = [x]a b := [y]na
[y]re:=1 C := [x]a

OCaml MM: reasonable rules for racy programs

[X]=1[y]l=0
o [xPt:=1C) a:=[x]* | b:=[y]m
[y]re:=1 C := [x]a

OCaml MM: reasonable rules for racy programs

[X]=[y]=0
= [xPti=1) a:=[x]* |b:=[y]"|
[yl :=1| c:=I[x]*

OCaml MM: reasonable rules for racy programs

Local data race
freedom:

result of reading x
[x] =1[yl=0 doesn’t depend on

> [xPti=10) a:=[x]* | [b:=[y]?]| the race ony
[[yl:=1] c:=I[x]*

OCaml MM: reasonable rules for racy programs

Local data race
freedom:

result of reading x
[x] =1[yl=0 doesn’t depend on

= [x]at:= 1 a:=[x]x [b:=[yl"| the race ony
[yl :=1| c:=[x]*

OCaml MM: reasonable rules for racy programs

Local data race
freedom:

result of reading x
[x] =1[yl=0 doesn’t depend on

= [x]at:= 1 a:=[x]* - 5b = [y]™| the race ony
[yl :=1| c:=[x]*

OCaml MM: reasonable rules for racy programs

Local data race
freedom:

result of reading x
[x] =1[yl=0 doesn’t depend on

= [x]at:= 1 a:=[x]x [b:=[yl"| the race ony
[y]na =1 I:>C o [X]at

OCaml MM: reasonable rules for racy programs

Local data race
freedom:

result of reading x
[x] =1[yl=0 doesn’t depend on

= [x]at:= 1 a:=[x]x [b:=[yl"| the race ony
[y]na =1 I:>C o [X]at

OCaml MM guarantees should be implemented

[x]=1yl=0
[X]:=1 a = [x]*< b :=[y]™
[y]™:=1 C := [x]s

a=b=1,c=0

10

OCaml MM guarantees should be implemented

[compile(Prog)].s,

11

OCaml MM guarantees should be implemented
by providing a correct compilation scheme

[compile(Prog)].s,

[Prog]OCamI MM

11

We’ve proved compilation correctness from OCaml

MM to Power

OCaml MM

X86

ARM

12

We've proved compilation correctness from OCaml

MM to Power

OCaml MM

X86

Power

ARM

12

We’ve proved compilation correctness from OCaml

MM to Power using IMM

OCaml MM

X86

IMM

Power

ARM

12

Another execution representation is needed

13

Consider the execution as a graph

R2*(x,1) R™(y,1)
[X] = [yl = 0
[X]et:=1 a = [x]a b = [y]na rf//’ r:g,/

e /
e 4
Y 7

w2t (x,1) w*?(y,1) R¥(x,0)

[y]ra:=1 C := [x]a

a=b=1,c=0

Jprogram order ,reads — from

14

A permission of execution Is determined by its graph

R2*(x,1) R™(y,1)
[X] = [yl = 0
[X]et:=1 a = [x]a b = [y]na rf//’ r:g,/

7 /

7 /
\ 2

[Y]”a =1 C:= [X]at 7/ v
Wat(X, 1) wna(y’ 1) Rat(X, 0)

15

A permission of execution Is determined by its graph

[x] =[yl=0
[X]at = 1 a .= [X]at b "= [y]na I'j;//

7
e

[y]re ;=1 C := [x]°t
OCaml MM: a—=b=1-€=0

A

4 /s

R2*(x,1)

7/
/
rf.
Vd
Vv
7/

wat(x,1) W*3(y,1)

Rna(y, 1)

/
/

R2*(x, 0)

OMM: no cycles made of po, rf and

15

Compilation correctness in terms of graphs

[COmpile(Prog)]lMM

[Prog]OCamI MM

16

Compilation correctness in terms of graphs

[compile(Prog)],um Graphs,,,,,(compile(Prog))

[Prog]OCamI MM C-:'raphSOCaml MM(PrOg

16

The identity compilation scheme won'’t work

compile(Prog) = [na — rlx, at = sc]Prog

17

The identity compilation scheme won'’t work
compile(Prog) = [na — rlx, at = sc]Prog

[x] =1yl=0
[x]sc:=1 a = [x]s b :=[y]™
[y]™:=1 C := [x]s

17

The identity compilation scheme won'’t work

compile(Prog) = [na — rlx, at = sc]Prog
RSC(X, 1) erx(y, 1)

[Xx] =[y]=0 r
[X]I:=1 = a:=[x]* | b:=[yl™ ri,/ rf,,/
[y]rlx — 1 C = [X]sc // y |

17

The identity compilation scheme won'’t work

compile(Prog) = [na — rlx, at = sc]Prog

[x] =[y]l=0
[X]sc:=1 a = [x]sc
[y]rlx — 1

a=b=1,c=0

R3¢(x,1)
b= [y]™ rf,” rf.’
C := [x]s 2 .’

erx (y, 1)

\4

R%¢(x, 0)

IMM: can have a cycle made of po, rf and

17

The identity compilation scheme won'’t work

£

G ra'phSOCamI MM(PrOg)

WeS(x, 1)

R%¢(x, 1)

7 1
g Ve
. " 4
rd 7/
g 7/
i rf
rd 7
7 7
>
¥ f

wrlx (y’ 1)

R*(x, 0)

erx (y, 1)'

Graphs,,,,,(compile(Prog)

18

Observed writes should remain so

R3¢(x, 1)

/s
Ve

/
rf.’ rf.’

Ve 7

e Ve

WSC(X,]_) erx(y,l)

erx ()/; 1)

\4

R3¢(x, 0)

19

Observed writes should remain so

R=1 7 gc(xv 1)
rﬁ// rf.’
wSC(X’ 1) erx(y7 1)

erx ()/; 1)

\4

R3¢(x, 0)

19

Observed writes should remain so

R=1 7 gc(xv 1)
rﬁ// rf.’
wSC(Xj 1) erx(yj 1)

erx(y7 1)
/1 Xx=0X
R%¢(x, 0)

19

Observed writes should remain so
= graph should have no cycles with rb

R=1 7 gc(xv 1)
ri// rf.’
wSC(X’ 1) erx(y7 1)

erx(y, 1)
/1 Xx=0X
R%¢(x, 0)

19

“Release” known writes and “acquire” them next

RSC(X, 1) erx(y’ 1)

7 7/
e /
e 7/

rf.’ rf.

Y \ 2V v

WS¢(x,1) Wr*(y,1) R®¢(x,1)

-~ - /‘r
— -
— -—
.

“Release” known writes and “acquire” them next

XxX=1v
RSC(X, 1) erx(y’ 1)

rf.’ rf.

Y \ 2V v

WS¢(x,1) Wr*(y,1) R®¢(x,1)

-~ - /‘r
— -
— -—
.

“Release” known writes and “acquire” them next

XxX=1v
RSC(X, 1) erx(y’ 1)

Ve 7

rf.’ rf.

/7

/// l /// A 4
WS¢(x,1) Wr*(y,1) R®¢(x,1)

-~ - /‘r
— -
— -—
.

20

“Release” known writes and “acquire” them next

XxX=1v
R¢(x, 1) erx(% 1) -1,

Ve 7

rf.’ rf.

/7

e ¢
WS¢(x,1) Wr*(y,1) R®¢(x,1)

-~ - /‘r
— -
— -—
.

20

Implemented with release and acquire fences

21

Implemented with release and acquire fences

compile(Prog) = [na — rlx, at = sc]Prog + Fences™ + Fencesa«

21

Implemented with release and acquire fences

compile(Prog) = [na — rIx, at = sc]Prog + Fences™ + Fencesa
[X] =1yl =0
[X]sc:=1 a 1= [x]s b:=[y]™
fencer fenceac

[y]™*:=1 C 1= [Xx]sc

21

Implemented with release and acquire fences

compile(Prog) = [na — rlx, at = sc]Prog + Fences™ + Fencesa«

[x] =[y]=0 R%¢(x;, 1)
[X]<:=1 | a:=[x]c | b:=[y]™ RO
rf,” Frel rf.”
fencer fenceaca 0
[y]rlx ‘= 1 C = [X]SC WSC(X7 1) "‘II'].X(-)/7 1)

erx (y7 1)

-
Ve
7/
7/

Facq

l

R%¢(x, 0)

21

Implemented with release and acquire fences

compile(Prog) = [na — rlx, at = sc]Prog + Fences™ + Fencesa«

[x] =[y]=0 RS°(x,1) R*™™(y,1)
[XI:=1 a:=[x]< | b:=[y]™ R 7
rf.” Frel rf,” Facd
fencere! fenceac l

[y]x:=1 C 1= [Xx]s¢ rSC(X7 1) erx(_)/, 1) RSC(X, O)

IMM: can have a cycle made of po, rf and
iIf there is rf without sc and fences 21

An IMM-inconsistent behavior i1s now prohibited

G raphSOCamI MM(PrOg)

RSC(X, 1) erx(% 1)
rf,” prel rf,” Facd
We(x1) WE(y1) R<(x0)
ey et
r

Graphs,,,,(compile(Prog))

The resulting scheme prohibits unwanted behaviors

OCaml MM IMM

r = [x|*® r = [x]**

[x]** := v | fence? ¥l [x|** = v
r = [x]* fence®**?; r = [x]5¢
[x]2* := v | fence®*%;exchange®°(x, V)

23

Takeaway

e Compilation scheme
from OCaml MM to IMM

e Proved to be correct

e Formalized in Coq

Machine-verified
compilation scheme from
OCaml MM to Power

https://github.com/weakmemory/imm

24

