From North Stars to Clever Insights

On using grand challenges to drive new technigues in automated
theorem proving

Nikolaj Bjgrner

Microsoft Research

Aim of talk

Describe a set of applications that use Satisfiability Modulo Theories, SMT

Describe model-based techniques, an insight driving SMT architecture

Satisfiability Modulo Theories (SMT)

Is formula ¢ satisfiable

modulo theory T ?
-

SMT solvers have
specialized algorithms for T

Satisfiability Modulo Theories (SMT)

X + 2 =y:>\ a,x,3),y —2)) =y—x+ 1)

Array Theory i Umnterpreted
Functions

select(store(a,i,v),i) = v
i +] = select(store(a,i,v),j) = select(a,j)

../tutorial/ex1.py
../tutorial/ex1.py
../tutorial/ex1.py
../tutorial/ex1.py.txt

/3 — An Efficient SMT Solver

What it is for: What it is:

* Program analysis tools ultimately ¢ General purpose theorem prover
rely on solving logical constraints

* Specialized algorithms for
“The calculus of computation” important workloads

* A need to lower barrier of entry * Open Source on GitHub
for program analysis tools

Some Microsoft Uses of Zg

Microsoft
Security Risk
Detection

SECGUI‘U and Dynamics Product PrOjeCt
FIB verifier CoE Everest

- = . . .- ‘rProduct Conﬁgurator

Solved billions of fuzzing Online checks of O(10°) Maintains design space Formal proofs for
constraints Azure routers + ACLs of parameters Crypto Protocols

Program paths Network Configurations Production Line Configs Program + Spec
m

also: Dynamics Tax tool, Visual Studio C++ compiler, Blockchain, Static Driver Verifier, Pex

https://www.fstar-lang.org/tutorial/
https://www.fstar-lang.org/tutorial/
https://www.fstar-lang.org/tutorial/
https://www.fstar-lang.org/tutorial/

» Verified C compiler for the Microsoft Hyper-Visor 2008-2012
» Verified TLS protocols, Crypto Libraries, Parsers. Project Everest 2016-2022

Several Significant Systemes:

* Frama-(C,

* VeriFast, Vyper,

* SeaHorn,
* K, Key

#include <vcc2.h>

Annotated C

typedef struct _BITMAP {
UINT32 Size; // Number of bits ..

PUINT32 Buffer; // Memory to store ..

// private invariants
invariant(Size > 0 && Size % 32 == 0)

$ref_cnt(old($s), #p) == $ref_cnt($s,

#p) && $ite.bool($set_in(#p,

$owns(old($s), owner)),
$ite.bool($set_in(#p, owns),
$st_eq(old($s), $s, #p),
$wrapped($s, #p, $typ(#p)) &&
$timestamp_is now($s, #p)),

(FORALL (v 1lv x 1xv w a b)

(QID bv:e:c4)

(PATS

($bv_extract

($bv_concat

($bv_extract v 1lv x 1lv) 1xv w x)
lv a b))

(IMPLIES

(AND

Dynamic Symbolic Execution for finding million-dollar bugs

z=x +y &z !=hash(x); error
Run Test and Monitor Path Condition
Execution Path

Constraint Input X,

System Z 1= X +y

Unexplored pat

X=O,y= haSh(X) Z=X +y&Z== haSh(X);

SAGE, Pex, Yogi, Corral, Vigilante, ..

C
RS,
i)

(qe)

O
=
o

Q
>
-z

-

O

=
s

()
zZ
D

(qo]

O
g

-

()

Q.

>
L

(<))
—
=)
]
(8}
(<))
§=
i =
()
S
<

N

D
!

Instance
Metadata

Reachability
invariants

[Jayaraman et al SIGCOMM 2019]

Connectivity Restrictions

Host Firewalls

Customer facing Network
Security Groups

Major refactoring of
Microsoft’s Edge ACL

Forwarding Policies

<_ Live monitoring of drift
. Pre-check before
deployment

. Design validation

Local Validation: The Scalability Trick

Root Cause Complexity Key Insight

* O(N?) Exploit Azure network’s regular

structure

 Each router has a fixed role

* Billions of pairs of ToRs
for a set of addresses

* Enough to verify role is

* Engineering challenge: enforced on each router

Synchronized snapshot of FIBs ,
Decompose into local contracts

Parallelize and scale

SMT-based Algorithm

VRF name: default
Codes: C - connected, S - static, K - kernel,
O - OSPF, IA - OSPF inter area, ...

BE-eBGP, ...
Define P,P; (0 <i<mn),and P,:
Gateway of last resort: » i(x_)’ - [Tl(x) () th . Lo P (3
B E 0.0.0.0/0 [200/0] via 30.10.192.12, ... () = if 7.prefix(x) then ;. nexthops else Py.1(x)
. P;(x) = drop
via ...
via ...
_ ry3.prefix(®) = 10.3.129.224 < ¥ < 10.3.129.140
B E 10.3.129.224/28 [200/0] via 10.10.192.12, ...

ri3.nexthops =10.10.192.12v ...
via ...

Check C.range(x) A P A =C.nexthops

[= =R = S R I

O O P D D [Dl D [l Dl = = = = = = = = =
WD =] O RN e Ll B e D D D8 =] O LN e D BO e D

ACL Verification Engine

remark Isolating private addresses
deny ip .0.0.8/32 any

v

deny ip 190.8.9.8/8 any
deny ip 172.16.8.8/12 any
deny ip 192.8.2.8/24 any

remark Anti spoofing ACLs
deny ip 128.30.8.8/15 any
deny ip 171.64.8.8/15 any

remark permits for IPs without
port and protocol blocks
permit ip any 171.64.64.0/20

remark standard port and protocol
blocks

deny tcp any any eq 445

deny udp any any eq 445

deny tcp any any eq 593

deny udp any any eq 593

déﬁy 33 any any
deny 55 any any

remark permits for IPs with
port and protocol blocks

permit ip any 128.30.0.8/15

permit ip any 171.64.0.8/15

P(x
P;i(x)
P;i(x)
Pp(X)

(10.0.0.0 < srclp < 10.255.255.255) A
protocol = 4

Py (x)
ri(x) V Pisi(X)

if rj.action = Allow

—ri(X) A Pij.1(X) if rj.action = Deny

false

Recursive

Function

Imandra iIs a cloud—-native Unfolding
automated reasoning engine. Agebraic ML

Datatypes

Imandra's groundbreaking Al helps ensure
the algorithms we rely on are safe, Ground
explainable and fair. Arithmetic

Verifying ReasonReact component logic

TRY IMANDRA ONLINE — ReasonML & Imandra
4 September 2018

INSTALL IMANDRA LOCALLY

Spotlight on an Imandra user:

In 2017 Aesthetic Integration partnered with Goldman
Sachs to help deliver the SIGMA X MTF Auction Book, a
new orderbook venue implementing periodic auctions. httos://trv.imandra.ai
Aesthetic Integration used Imandra, our own automated i

https://try.imandra.ai/

Quantum: Reversible pebbling game

Example: find a pebbling strategy using 6 pebbles.

space-time trade-off

pebbling configurations

P, ={0}, ol o
yZ e P2 = {a}) d o o e o o =
P3 = {a’ b}, f o e o o o o

P4= {a ’ bl C}I

P5 = {al bl CI d}l X3
X
oo B
1) X3 X

X, c
P7 = {al bl C, d; e, f}; 10) (J-) ,l\ -

X 0—o——U] o 10)
- [0) n |0)

P8 - {a, bl C e, f}; |0) < (l) e é \ 10)

|0) o .
P9= {a, b' e' f}l |0) ~ O 51
2

P]_() = {al el f})
P =P, ={e f}

DATE-2019. Giulia Meuli Mathias Soeken, Giovanni De Micheli (EPFL), Martin Roetteler, B (Microsoft)

Example in Tutorial

Axiomatic Economics

Models of economics formulated using Non-linear Real Arithmetic

Figure 4a. The Laffer curve for transfers Figure 4b. The Laffer curve for transfers
share of share of
efficient GDP efficient GDP
08 08
0.6
U(C, n} > Ugink
u(c,n)
— U(C.N) = Uink — ufe.n) in)
0.4l — U(C, n} £ Ukink Al — u(c,n) = Uynke
02
DO i 1 1 1 L r
0.0 0.2 0.4 0.6 0.8 10 00 ; ‘ i : 2
0.95 0.96 0.97 0.98 0.99 1.00

Casey Mulligan, University of Chicago, School of Economics uses Mathematica, REdIOg’E)?ample i Tutorial

Symbolic Analysis Engines

SLS, floats

vZ: Opt+MaxSMT

" N uZ: Datalog
FORMULA Generalized PDR

Modeling Foundations. ¢

Existential Reals
cc i Model Constructing SAT

CutSAT: Linear Integer Formulas
M‘SAG E Quantified Bit-Vectors

Linear Quantifier Elimination

Model Based Quantifier Instantiation

Generalized, Efficient Array Decision Procedures

!u LVOC | Engineering DPLL(T) + Saturation

Effectively Propositional Logic

Model-based Theory Combination.

Relevancy Propagation

Efficient E-matching for SMT solvers zgl nterna |S

Model-based techniques in
Automated Theorem Proving

Saturation x Search

Proof-finding Model-finding

Two procedures

DPLL

Proof-finder Model-finder
Saturation Search

Saturation: successful instances

Polynomial time procedures

Gaussian Elimination

Congruence Closure

Search: successful instances

Decomposable Search Spaces

The “Cube” in “Cube & Conquer”

Some instances of model finding

CDCL: Conflict Driven Clause Learning

Resolve
Learn —q
Conflict Conflict
—pV q, pV q, —p Vg, pVq

Propagate —p \/ Backjurk/
—q q
\ / Propagate —q
Guess q
1

Linear Arithmetic

Fourier-Motzkin m

Proof-finder Model-finder
Saturation Search

Linear Arithmetic

Saturation:

a<x,b<xc<xx<dx<e
a<da<eb<db<ec<dc<d

Model Finding:

as<x,b<x,c<x,x<d,x<e
d,d<e a<e,b<e,c<e,e<d

@elsd 2, K Edels d= ‘D

Other examples

(for linear arithmetic)

Generalizing DPLL to
richer logics
[McMillan 2009]

Fourier-Motzkin X Conflict Resolution
[Korovin et al 2009]

Unate Lemmas
[Coton 2009]

Little engines of proof

Z3 Architecture

SMT = SAT + Theories

* SAT Solver handles search
* Theory Solvers handle theory reasoning

* Integration through equality sharing

E-matching
based
Quantifier
instantiation

1]

e

£y

EUF + SAT

%

I

4

I

Model based
Quantifier
instantiation

-~

L

Theories

Arithmetic

Arrays

Bit-vectors

A

~

[Datatypes

Strings
Sequences

)

Model-based theory combination

 Each theory constructs a candidate model

 Each model implies some equalities

* Propagate equalities implied by candidate model

* Use backtracking if theories cannot reconcile equalities

Theory Solver 1 found solution Theory Solver 2 found solution

X+¥+Z =1 X+Y+Z=2
X=Y=0,2=1 X=0,Y=2=1

Search for solution where X=Y =7 [Moura & B, SMT 2007]

Model-based Quantifier Instantiation

: b
Assume we are given) A VX (p[x], v f(b) > f(a)
then use model for Y as starting point o[x]: F(x) > f(a)

for search of instantiations of VX @[x]
Candidate model:

(declare-fun f (Int) Int) a:=0,b:=]_’f(x) =x=071:2
(declare-const a Int)
(declare-const b Int)

Model check:
(assert (forall ((x Int)) (> (f x) (f a))))
' P
(assert (> (f b) (f a))) IS f(X) < f(a) SAT:
x=071:2 =1

(check-sat)
Yes,setx =a =0

Model-based Quantifier Instantiation

Assume we are given l/) ANVx (p[x],
then use model for Y as starting point

for search of instantiations of VX @[x]

tM = xMis not a strict
s.add(v) requirement.
while True:
if unsat == s.check(): . - .
return unsat It is sufficient to use M to mine
M = s.model() for a term t that still satisfies
checker = Solver()
checker.add(—y¢™ [x]) ¢ [t]
if unsat == checker.check(]

return sat
M = checker.model()
find t, such that z &t tM =M,

s.add(plt])
lt] [Ge, de Moura CAV 20089, ..]

Generalized, Efficient Array Decision Procedures

KW)i=v

Array store and read operations (a[1]), and , , ,
v P (alil]) map(ar,.....an)li] = f(ali,...,anli)

a = store(b,i,v)

dx ali| ~ v

a = store(b,i,v), w=d|[j], a~d

4

i~ jValj] >~ blj]
Rules such as: N o= store(bi,v), w="b[j], b

1~ jValj] ~blj]
a:(c=71), b:(oc=T71)

xt
A~V alkas] % blkas)

Model-based filters for restricting the application of these rules while

retaining completeness.
5 P [de Moura & B, FMCAD 2009]

Polynomial Constraints

AKA

Existential Theory of the Reals

x*—4x+y*—y+8 <1
Xy —2x —2y+4>1

NLSAT

Key ideas: Use partial solution to guide the search

\—

Starting search
Partial solution:

x « 0.5

Can we extenditto y?

MCSat

Tra|I

x+y+z>0 x+y+z<0

Search
* Trail: values guessed for sub-terms
* Propagate values, derive consequences
* Conflict resolution: Detect, backjump, learn
* Forget, restart, indexing,...

T-Solvers

Craig Interpolant

Generallzatlon

cyez>0 xyrzco kim0 ly-o MR
Conflict: z>0,z<0

x>0is “explained” by theclausex + y + z > OA —x +y + z < 0=
x >0 [Jovanovich, Barret, de Moura, VMCAI 2013]

Arithmetic

Solver

Solving LIA* using approximations
- models and interpolants

y
F
2
Fiiy+2x=>17N6x —y < 47 FS +3Axq,V1X2, Vo, .
Fy (1, y1) A Fa (32, 2) A=+ A Fy (X, Yic) A
Fp:5x+2y >217A3x —y<8A2x+3y <20 X=)xi ANy =DY;
FiA F, is UNSAT Fy A F} is SAT

[Levatich, B, Piskac, Shoham, to appear VMCAI 2020]

Solving LIA* using Approximations

Claim: F, can be expressed in LIA

Claim: F, can be expressed as ¥ € U; a; + B;
i.e., every LIA formula is a finite union of semi-linear sets.

Justification: F; (x) = 3ud. (X = X;u;a; + 4iBH)AN,(w; =0—-> 4, =0)

Brute force solver: express F, using semi-linear sets, then use LIA solver

Catch: completely impractical

Solving LIA* using Approximations

Establish under-approximation U* — F, such that U™ A F; is SAT

I :
i

o

=

Solve F; A F; Ao,
Y

)

o)

@ ;,h

Establish over-approximation F, — O™ such that O™ A F; is UNSAT

Under-approx U" = F; such that U™ A Fy is SAT

Initially, U =0, U* = (x,y) = (0,0)

Maintain, U = U; a; + AB; under-approximates F,
and set U*(X) :== 3uA. (X = Y;uia; + 1;B)) AN;(u; =0 - A; = 0)

Find x, y: U (xg, Vo) AFy (6, y) AU (xg + x,y0 + V)

Add (x,y) to U, reduce vectors using new element

Over-approx F;, — O such that O™ A Fy is UNSAT

Up ={ (x,)| U"(x,¥)}

Uit = U U{(x1 + 22,71 +¥2) | Uip1 (X1, y1) A Fp(x2,¥2)}
BO = { (ny)l Fl(x).Y)}

Biv1 =B U{(x;+x2,¥1 +¥2) | Bix1(x1,¥1) A Fp(x2,¥2)}

U,

Over-approx F;, — O such that O™ A Fy is UNSAT

Initially O™ := true

Interpolate

U™ (x9,¥0) A Fy(x1,¥1) = 1(xg + x1,¥0 + ¥1),
I(x,y) = (Fo(x2,¥,) = =F(xp +x,5, +¥))

Add conjunctions from I to O™ that are inductive, that is:
0" (x,y) ANFy(x1,y1) = 0" (x + x1,y + y1)

Solving LIA* using Approximations

Q:

Can we leverage duality fully?
We were only exploiting the duality in one direction:
Under-approximation U* used to strengthen O*

But O* was not used to weaken U*

QSAT — Playing with Models and Cores

Instantiated to theories

* Linear real arithmetic

* Linear integer arithmetic
* Algebraic datatypes

* Non-linear real arithmetic
* (Bit-vectors)

Q: What is a good approach to learn strategies?

Q: Mixing theories and beyond theories that admit QE?

QSAT — Playing with Models and Cores

Two players
e 3: Ax Vy,IAx3Vy,F, Fi «F;«F Example move:
e V: VxlflyZVx3E|y4—|F FZ &« F4_ «— oF
« F3 ASAM is UNSAT
State: * Core < Some UNSAT Coreof F AMAS
« A model, M, ¢ 3C <« Model-based projection of 3y, Core
» for oponents solution s FL«F A=3C
* Astrategy, S * Play game at level 1

 function declaring how opponent would assign its variables in response
* Example

* Itis x3’s turn

* Msays x; =5,y, =3

* S says Yy, =x3+ 2

[Janota, B LPAR 2015 short]

summary

* SMT solvers have come into quite wide-spread use in the past decade
* Thanks to a large span of applications and technical advances

* Many solving techniques exploit duality of model search and deduction
* Harnessing the interplay remains a throve of future opportunities
* Beyond model-based techniques:
 “Cubing”: Establish problem decomposition

* “Strategies”: Prune search space that is no more likely to produce
solutions

Research Question: Guiding Search

Problem: Tuned engines are prone to overfitting

State of art: Tune input parameters (using ML) and code back-off schemes

Opportunity: Use data-driven techniques to re-direct search

Learning cubes using DNNs

Goal: Choose most important case split Experiment:
 Generated 100,000 unsat
Train DNN using unsat formulas: problems from SAT

competition 2014-2017

* Trained network with
cores from the training set

* Log conflict clauses
e Use DRAT-Trim to extract unsat core

* Score(v) :=if vin core then 1 else 0. ,
* Integrated in SAT solvers

glucose, MiniSAT, Z3

Idea: only variables in a core are useful to case by periodically refocusing
split on case split queue

* Evaluated on SAT2018
DNN architecture: NeuroSAT (a graphical * Solved +10%/+20% more

Neural Network)

[Selsam, B. SAT 2019]

Background and Learnings

* Clauses: (x1 V22 Vx3)A(T1 VT3V IT3)

C1 Co
* Graphical Network: / \
 DRAT proof Trail: ~ “1 7777~ Zi R z2 T3 ————= 73

3 core.cnf sat.drat.file=f.out

* Learning: Access to DRAT proof trail enables 20/20
hindsight for optimization. Makes RL less relevant.

* Future: We could explore space of objective
functions much more and instance specific uses.

Research Question: Scaling Search

Problem: How to use cloud resources to solve really-hard problems?
State of art: Cube & Conquer in SAT solvers, Branch & Bound in MIP

Opportunity: Use Azure infrastructure for scalable Cube & Conquer for SMT

Cube, Cloud and Z3

Rahul Kumar (MSR)
Miguel Neves (U Lisboa)

Prepare
initial goal

LO worker

Store and
retrieve
state

Blob Store

Cubes

Formulas
Solutions L1 worker

Configurations Solves and creates
subgoals

