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Aim of talk 

 

 

Describe a set of applications that use Satisfiability Modulo Theories, SMT 

 

 

Describe model-based techniques, an insight driving SMT architecture 

 



Is formula   satisfiable 
modulo theory T ?  

SMT solvers have 

specialized algorithms for T 

SMT solvers have 

specialized algorithms for T 

Satisfiability Modulo Theories (SMT) 



Arithmetic Array Theory 
Uninterpreted 

Functions 

Uninterpreted 

Functions 

𝑠𝑒𝑙𝑒𝑐𝑡(𝑠𝑡𝑜𝑟𝑒 𝑎, 𝑖, 𝑣 , 𝑖) = 𝑣 
𝑖 ≠ 𝑗 ⇒ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑠𝑡𝑜𝑟𝑒 𝑎, 𝑖, 𝑣 , 𝑗) = 𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑗) 

𝑥 + 2 = 𝑦 ⇒ 𝑓 𝑠𝑒𝑙𝑒𝑐𝑡 𝑠𝑡𝑜𝑟𝑒 𝑎, 𝑥, 3 , 𝑦 − 2 = 𝑓(𝑦 − 𝑥 + 1) 

Satisfiability Modulo Theories (SMT) 

../tutorial/ex1.py
../tutorial/ex1.py
../tutorial/ex1.py
../tutorial/ex1.py.txt


Z3 – An Efficient SMT Solver 

What it is for: 

 

• Program analysis tools ultimately 
rely on solving logical constraints 

 

    “The calculus of computation” 

 

• A need to lower barrier of entry 
for program analysis tools 

 

 

What it is: 

 

• General purpose theorem prover 

 

• Specialized algorithms for 
important workloads 

 

• Open Source on GitHub 

 

 

 



Some Microsoft Uses of  

Microsoft 
Security Risk 

Detection 

SecGuru and 
FIB verifier 

Dynamics Product 
Configurator 

Project  
Everest 

∀𝑥∃𝑦 𝑝 𝑥 → 𝑥 ≥ 𝑦 

https://www.fstar-
lang.org/tutorial/ 

https://www.fstar-lang.org/tutorial/
https://www.fstar-lang.org/tutorial/
https://www.fstar-lang.org/tutorial/
https://www.fstar-lang.org/tutorial/


• Verified C compiler for the Microsoft Hyper-Visor 2008-2012 
• Verified TLS protocols, Crypto Libraries, Parsers. Project Everest 2016-2022 
 
 

 
 
 
 
 
 

Several Significant Systems: 
• Frama-C,  
• VeriFast, Vyper,  
• SeaHorn, 
• K, Key 

$ref_cnt(old($s), #p) == $ref_cnt($s, 
#p) && $ite.bool($set_in(#p, 
$owns(old($s), owner)), 
   $ite.bool($set_in(#p, owns),  
   $st_eq(old($s), $s, #p),  
   $wrapped($s, #p, $typ(#p)) &&  
   $timestamp_is_now($s, #p)), 
$ite.bool($set_in(#p, owns),  
$owner($s, #p) == owner && $closed($s,  
  

#include <vcc2.h> 
  
typedef struct _BITMAP { 
  UINT32 Size;      // Number of bits …  
  PUINT32 Buffer;   // Memory to store … 
  
  // private invariants 
  invariant(Size > 0 && Size % 32 == 0)  
  …  

  
 

Annotated C 
  
 

(FORALL (v lv x lxv w a b) 
 (QID bv:e:c4) 
 (PATS  
   ($bv_extract  
    ($bv_concat  
    ($bv_extract v lv x lv) lxv w x)  
 lv a b)) 
    (IMPLIES 
      (AND 
  
 

FOL 
  
 

Boogie 

Z3 



Dynamic Symbolic Execution for finding million-dollar bugs 

SAGE, Pex, Yogi, Corral, Vigilante,  .. 

Execution Path Execution Path 
Run Test and Monitor Path Condition 

Unexplored path Solve 

seed seed 

New input 

Test 
Inputs 

Test 
Inputs 

Constraint 
System 

Constraint 
System 

Known 
Paths 

Known 
Paths 

error(); 

z == 
hash(x) 

Return z 

Input x, y 

Z := x + y 

x = y = 0 

z = x  + y & z != hash(x); error 

z = x  + y & z == hash(x);  x = 0, y = hash(x) 



HyperScale Network Verification 

T1-1 T1-2 T1-3 T1-m 

T0-1 
ASN 

65510 

T0-2 
ASN 

65511 

T0-q 
ASN 

65520 

Servers 

T1-1 T1-2 T1-3 T1-m 

T0-1 
ASN 

65510 

T0-2 
ASN 

65511 

T0-q 
ASN 

65520 

Servers 

T1-1 T1-2 T1-3 T1-m 

T0-1 
ASN 

65510 

T0-2 
ASN 

65511 

T0-q 
ASN 

65520 

Servers 

T2-1-1 T2-1-1 T2-1-n T2-1-1 T2-1-1 T2-1-n 

T3-2 T3-1 T3-3 T3-p Architecture 

Reachability 
invariants 

Errors 

Instance 
Metadata 

[Jayaraman et al SIGCOMM 2019] 



Forwarding Policies 

Live monitoring of drift 

Pre-check before 
deployment 

Design validation 

Connectivity Restrictions 

Host Firewalls 

Customer facing Network 
Security Groups 

Major refactoring of 
Microsoft’s Edge ACL 



Local Validation: The Scalability Trick 

Root Cause Complexity 

• O(N3) 

 

• Billions of pairs of ToRs 

 

• Engineering challenge: 
Synchronized snapshot of FIBs 

Key Insight 

Exploit Azure network’s regular 
structure 

• Each router has a fixed role 
for a set of addresses 

• Enough to verify role is 
enforced on each router 

Decompose into local contracts 

Parallelize and scale 



SMT-based Algorithm 

VRF name: default 

Codes: C - connected, S - static, K - kernel,  

       O - OSPF, IA - OSPF inter area, ... 

       B E - eBGP, ... 

       ... 

Gateway of last resort: 

 B E 0.0.0.0/0 [200/0] via 30.10.192.12, ... 

                       via ... 

                       via ... 

                       .... 

 B E 10.3.129.224/28 [200/0] via 10.10.192.12, ... 

                             via ... 

                             ... 

 𝐫𝟏𝟑. 𝒑𝒓𝒆𝒇𝒊𝒙 𝒙 = 𝟏𝟎. 𝟑. 𝟏𝟐𝟗. 𝟐𝟐𝟒 ≤ 𝒙 ≤ 𝟏𝟎. 𝟑. 𝟏𝟐𝟗. 𝟏𝟒𝟎 
 𝐫𝟏𝟑. 𝒏𝒆𝒙𝒕𝒉𝒐𝒑𝒔 = 𝟏𝟎. 𝟏𝟎. 𝟏𝟗𝟐. 𝟏𝟐 ∨ . . . 
 

𝑫𝒆𝒇𝒊𝒏𝒆 𝑷, 𝑷𝒊 𝟎 ≤ 𝒊 ≤ 𝒏 , 𝒂𝒏𝒅 𝑷𝒏: 
𝑷 𝒙 = 𝑷𝟏 𝒙  
𝑷𝒊 𝒙 = 𝒊𝒇 𝒓𝒊. 𝒑𝒓𝒆𝒇𝒊𝒙 𝒙  𝒕𝒉𝒆𝒏 𝒓𝒊. 𝒏𝒆𝒙𝒕𝒉𝒐𝒑𝒔 𝒆𝒍𝒔𝒆 𝑷𝒊+𝟏 𝒙  
𝑷𝒊 𝒙 = 𝒅𝒓𝒐𝒑 

 
Check 𝑪. 𝒓𝒂𝒏𝒈𝒆 𝒙 ∧ 𝑷 ∧ ¬𝑪. 𝒏𝒆𝒙𝒕𝒉𝒐𝒑𝒔 



ACL Verification Engine 



https://try.imandra.ai/  

Recursive  
Function  
Unfolding 

 
Algebraic ML 
Datatypes 

 
Ground  
Arithmetic 

https://try.imandra.ai/


Quantum: Reversible pebbling game 

DATE-2019. Giulia Meuli  Mathias Soeken, Giovanni De Micheli (EPFL), Martin Roetteler, B (Microsoft) 

Example: find a pebbling strategy using 6 pebbles.  

a ◌ ● ● ● ● ● ● ● ● ● ◌ 

b ◌ ◌ ● ● ● ● ● ● ● ◌ ◌ 

c ◌ ◌ ◌ ● ● ● ● ● ◌ ◌ ◌ 

d ◌ ◌ ◌ ◌ ● ● ● ◌ ◌ ◌ ◌ 

e ◌ ◌ ◌ ◌ ◌ ● ● ● ● ● ● 

f ◌ ◌ ◌ ◌ ◌ ◌ ● ● ● ● ● 

a b 

f 

e 

d c 

x1 x2 x3 
x4 

y1 

y2 

P1 = {φ},  

P2 = {a}, 

P3 = {a, b}, 

P4 = {a , b, c}, 

P5 = {a, b, c, d}, 

P6 = {a, b, c, d, e}, 

P7 = {a, b, c, d, e, f}, 

P8 = {a, b, c, e, f},  

P9= {a, b, e, f}, 

P10 = {a, e, f}, 

Pm = P11 = {e, f} 

pebbling configurations 

x1 

x2 

x3 

x4 
 0  

 0  

 0  

 0  

a a 
b b 

c c 
d 

e 

d 

f 

 0  

 0  y2 

y1 

 0  

x1 

x2 

x3 

x4 
 0  

 0  

 0  

space-time trade-off 

reversible circuit 

Example in Tutorial 



Casey Mulligan, University of Chicago, School of Economics uses Mathematica, Redlog, Z3  

Axiomatic Economics 

Models of economics formulated using Non-linear Real Arithmetic 

Example in Tutorial 



Symbolic Analysis Engines 

SAGE 

HAVOC 

Efficient E-matching for SMT solvers 

Model-based Theory Combination. 

Relevancy Propagation 

Effectively Propositional Logic 

Engineering DPLL(T) + Saturation 

Generalized, Efficient Array Decision Procedures 

Linear Quantifier Elimination  

Model Based Quantifier Instantiation 

Quantified Bit-Vectors 

CutSAT: Linear Integer Formulas 

Model Constructing SAT 

Existential Reals  

   nZ: Opt+MaxSMT 
mZ: Datalog  

Generalized PDR  

SLS, floats  

            Internals  



Model-based techniques in 
Automated Theorem Proving 



Saturation   x    Search 

Proof-finding Model-finding 

M
o

d
els 

P
ro

o
fs

 



Two procedures 

Resolution DPLL 

Proof-finder Model-finder 

Saturation Search 



Saturation: successful instances 

Polynomial time procedures 

Gaussian Elimination 

 

Congruence Closure 



Search: successful instances 

Decomposable Search Spaces 

The “Cube” in “Cube & Conquer” 

 

Some instances of model finding 



CDCL: Conflict Driven Clause Learning 

D
P

LL 

U
n

it
 r

es
o

lu
ti

o
n

 
¬𝑝 ∨ ¬𝑞,     𝑝 ∨ ¬𝑞,    ¬𝑝 ∨ 𝑞,    𝑝 ∨ 𝑞  

¬𝑞  𝑞  

⊥⊥ 

Conflict  

Resolve 

Learn ¬𝒒 
Conflict  

Backjump 

Guess  q 

Propagate ¬𝑝  

Propagate ¬𝒒  



Linear Arithmetic 

Fourier-Motzkin Simplex 

Proof-finder Model-finder 

Saturation Search 



Linear Arithmetic 

Saturation: 

 
𝑎 ≤ 𝑥, 𝑏 ≤ 𝑥, 𝑐 ≤ 𝑥, 𝑥 ≤ 𝑑, 𝑥 ≤ 𝑒

𝑎 ≤ 𝑑, 𝑎 ≤ 𝑒, 𝑏 ≤ 𝑑, 𝑏 ≤ 𝑒, 𝑐 ≤ 𝑑, 𝑐 ≤ 𝑑
 

 

Model Finding: 

 

         
𝑎≤𝑥,𝑏≤𝑥,𝑐≤𝑥,𝑥≤𝑑,𝑥≤𝑒

𝑎≤𝑑,𝑏≤𝑑,𝑐≤𝑑,𝑑≤𝑒    𝑎≤𝑒,𝑏≤𝑒,𝑐≤𝑒,𝑒≤𝑑 
 

   
For models d = 2, e = 3 For models  d = 4, e = 3 



Other examples 
(for linear arithmetic) 

Fourier-Motzkin 

Generalizing DPLL to 
richer logics 

[McMillan 2009] 

Conflict Resolution 
[Korovin et al 2009] 

X 

Unate Lemmas 
[Coton 2009] 



Little engines of proof 

Z3 Architecture  

 

 

SMT = SAT + Theories 

 
• SAT Solver handles search 

 

• Theory Solvers handle theory reasoning 

 

• Integration through equality sharing 



Model-based theory combination 

• Each theory constructs a candidate model 

• Each model implies some equalities 

• Propagate equalities implied by candidate model 

• Use backtracking if theories cannot reconcile equalities 

Theory Solver 1 found solution 
X + Y + Z  = 1 
X = Y = 0, Z = 1 
 
 
 
   

Theory Solver 2 found solution 
X + Y + Z = 2 
X = 0, Y = Z = 1 

[Moura & B, SMT 2007] Search for solution where X = Y = Z 



Model-based Quantifier Instantiation 

Assume we are given 𝜓 ∧ ∀𝑥 𝜑[𝑥],  
then use model for 𝜓 as starting point 

for search of instantiations of ∀𝑥 𝜑[𝑥]  

 𝜓:         𝑓 𝑏 > 𝑓(𝑎) 
  

 𝜑 𝑥 :   𝑓 𝑥 > 𝑓(𝑎) 
 
Candidate model: 
 
𝑎 ≔ 0, 𝑏: = 1, 𝑓 𝑥 ≔ 𝑥 = 0? 1: 2 

 
Model check: 
 
     is 𝑓(𝑥) 
𝑥=0?1:2

≤ 𝑓(𝑎) 
=1

  SAT? 

 
Yes, set 𝑥 = 𝑎 = 0 
 
 
 



Model-based Quantifier Instantiation 

Assume we are given 𝜓 ∧ ∀𝑥 𝜑[𝑥],  
then use model for 𝜓 as starting point 

for search of instantiations of ∀𝑥 𝜑[𝑥]  
𝑡𝑀 = 𝑥𝑀 is not a strict 
requirement.  
 
It is sufficient to use M to mine 
for a term t that still satisfies 

𝜑[𝑡] 

[Ge, de Moura CAV 2009, ..] 



Generalized, Efficient Array Decision Procedures 

Array store and read operations (a[i]), and 

 

 

 

Rules such as: 

 

 

 

Model-based filters for restricting the application of these rules while 

retaining completeness.  
[de Moura & B, FMCAD 2009] 



Polynomial Constraints 

𝑥2 − 4𝑥 + 𝑦2 − 𝑦 + 8 < 1 
 𝑥𝑦 − 2𝑥 − 2𝑦 + 4 > 1 

AKA 
Existential Theory of the Reals 



NLSAT 
Key ideas: Use partial solution to guide the search 

𝑥3 + 2𝑥2 + 3𝑦2 − 5
< 0 

𝑥2 + 𝑦2 < 1 

−4𝑥𝑦 − 4𝑥 + 𝑦
> 1 

Feasible Region 

Starting search 
Partial solution: 

𝑥 ← 0.5 

Can we extend it to 𝑦? 



MCSat 

Search 
• Trail: values guessed for sub-terms 

• Propagate values, derive consequences 

• Conflict resolution: Detect, backjump, learn 

• Forget, restart, indexing,… 

T-Solvers 

x + y + z > 0  -x + y + z < 0  x := 0 y := 0 
Arithmetic 

Solver 

x + y + z > 0  -x + y + z < 0  x > 0 

Conflict: z > 0, z < 0 

x > 0 is “explained” by the clause 𝑥 +  𝑦 +  𝑧 >  0 ∧ −𝑥 +  𝑦 +  𝑧 <  0 ⇒
 𝑥 >  0 

x + y + z > 0  -x + y + z < 0  x := 0 y := 0 

Trail 

MCSAT 

Craig Interpolant Generalization 

[Jovanovich, Barret, de Moura, VMCAI 2013] 



Solving LIA* using approximations 
    - models and interpolants 

 𝐹1: 𝑦 + 2𝑥 ≥ 17 ∧ 6𝑥 − 𝑦 ≤ 47  
 
 𝐹2: 5𝑥 + 2𝑦 ≥ 17 ∧ 3𝑥 − 𝑦 ≤ 8 ∧ 2𝑥 + 3𝑦 ≤ 20 
 
 
 𝐹1∧ 𝐹2 is UNSAT 
 

 𝐹2
∗ ∶ ∃𝑥1, 𝑦1𝑥2, 𝑦2, … 

      𝐹2 𝑥1, 𝑦1 ∧ 𝐹2 𝑥2, 𝑦2 ∧ ⋯∧ 𝐹2 𝑥𝑘 , 𝑦𝑘 ∧ 
      𝑥 = ∑𝑥𝑖 ∧ 𝑦 = ∑𝑦𝑖  
 
 
𝐹1 ∧ 𝐹2

∗ is SAT 
 [Levatich, B, Piskac, Shoham, to appear VMCAI 2020] 



Solving LIA* using Approximations 

Claim: 𝐹2
∗ can be expressed in LIA 

Claim: 𝐹2 can be expressed as 𝒙 ∈  𝑎𝑖 + 𝐵𝑖
∗

𝑖  
 i.e., every LIA formula is a finite union of semi-linear sets. 

Justification: 𝐹2
∗(𝑥 ) ≔ ∃𝝁𝝀. (𝑥 =  ∑ 𝜇𝑖𝑎𝑖 + 𝜆𝑖𝐵𝑖) ∧  𝜇𝑖 = 0 → 𝜆𝑖 = 0𝑖𝑖  

Brute force solver: express 𝐹2
∗ using semi-linear sets, then use LIA solver 

 
Catch: completely impractical 



Solving LIA* using Approximations 

Solve 𝐹1 ∧ 𝐹2
∗  

Establish under-approximation 𝑈∗ → 𝐹2
∗ such that  𝑈∗ ∧ 𝐹1  is SAT 

Establish over-approximation 𝐹2
∗ → 𝑂∗ such that 𝑂∗ ∧ 𝐹1 is UNSAT 

P
ro

o
fs 

M
o

d
el

s 



Under-approx 𝑈∗ → 𝐹2
∗ such that  𝑈∗ ∧ 𝐹1  is SAT 

 
Initially, 𝑈 ≔ ∅,  𝑈∗  ≔ 𝑥, 𝑦 = 0,0   
 
Maintain, 𝑈 =  𝑎𝑖 + 𝜆𝐵𝑖𝑖   under-approximates 𝐹2 
    and set 𝑈∗(𝑥 ) ≔ ∃𝝁𝝀. (𝑥 =  ∑ 𝜇𝑖𝑎𝑖 + 𝜆𝑖𝐵𝑖) ∧  𝜇𝑖 = 0 → 𝜆𝑖 = 0𝑖𝑖  
 
Find 𝑥, 𝑦: 𝑈∗ 𝑥0, 𝑦0 ∧ 𝐹2 𝑥, 𝑦 ∧ ¬𝑈

∗ 𝑥0 + 𝑥, 𝑦0 + 𝑦   
 
Add (𝑥, 𝑦) to 𝑈, reduce vectors using new element 



Over-approx 𝐹2
∗ → 𝑂∗ such that 𝑂∗ ∧ 𝐹1 is UNSAT 

 𝑈0 ≔  𝑥, 𝑦  𝑈
∗ 𝑥, 𝑦 } 

 
 𝑈𝑖+1 ≔ 𝑈𝑖 ∪ { (𝑥1 + 𝑥2, 𝑦1 + 𝑦2)   𝑈𝑖+1 𝑥1, 𝑦1 ∧ 𝐹2(𝑥2, 𝑦2)} 

 𝐵0 ≔  𝑥, 𝑦  𝐹1 𝑥, 𝑦 } 
 
 𝐵𝑖+1 ≔ 𝐵𝑖 ∪ { (𝑥1 + 𝑥2, 𝑦1 + 𝑦2)   𝐵𝑖+1 𝑥1, 𝑦1 ∧ 𝐹2(𝑥2, 𝑦2)} 

𝐵0 

𝐵1 

𝐵2 

𝑈0 

𝑈1 

𝑈2 



Over-approx 𝐹2
∗ → 𝑂∗ such that 𝑂∗ ∧ 𝐹1 is UNSAT 

 
Initially 𝑂∗ := true 
 
Interpolate  
 𝑈∗ 𝑥0, 𝑦0 ∧ 𝐹2 𝑥1, 𝑦1 → 𝐼(𝑥0 + 𝑥1, 𝑦0 + 𝑦1),  
             𝐼(𝑥, 𝑦) → (𝐹2 𝑥2, 𝑦2 → ¬𝐹1 𝑥2 + 𝑥, 𝑦2 + 𝑦 ) 
 
Add conjunctions from 𝐼 to 𝑂∗ that are inductive, that is: 
 𝑂∗ 𝑥, 𝑦 ∧ 𝐹2 𝑥1, 𝑦1 → 𝑂

∗ 𝑥 + 𝑥1, 𝑦 + 𝑦1  
 



Solving LIA* using Approximations 

Q:  
 Can we leverage duality fully? 
 
 We were only exploiting the duality in one direction: 
 
 Under-approximation U* used to strengthen O* 
 
 But O* was not used to weaken U* 
 
 



QSAT – Playing with Models and Cores 

Instantiated to theories 

• Linear real arithmetic 

• Linear integer arithmetic 

• Algebraic datatypes 

• Non-linear real arithmetic 

• (Bit-vectors) 

 

Q: What is a good approach to learn strategies? 

 

Q: Mixing theories and beyond theories that admit QE? 



QSAT – Playing with Models and Cores 

Two players  

• ∃: ∃𝑥1∀𝑦2∃𝑥3∀𝑦4𝐹,   𝐹1 ← 𝐹3 ← 𝐹 

• ∀: ∀𝑥1∃𝑦2∀𝑥3∃𝑦4¬𝐹  𝐹2 ← 𝐹4 ← ¬𝐹 
 

State: 

• A model, M,   

• for oponents solution 

• A strategy, S,  

• function declaring how opponent would assign its variables in response 

• Example 

• It is 𝑥3’s turn 

• M says  𝑥1 = 5, 𝑦2 = 3   
• S  says  𝑦4 = 𝑥3 + 2 

Example move: 

 

• 𝐹3 ∧ 𝑆 ∧ 𝑀 is UNSAT 

• Core ← 𝑆𝑜𝑚𝑒 𝑈𝑁𝑆𝐴𝑇 𝐶𝑜𝑟𝑒 𝑜𝑓 𝐹3 ∧ 𝑀 ∧ 𝑆 

• ∃𝐶 ← Model-based projection of ∃𝑦2 𝐶𝑜𝑟𝑒  

•  𝐹1 ← 𝐹1 ∧ ¬∃𝐶 

• Play game at level 1 

[Janota, B LPAR 2015 short] 



Summary 

• SMT solvers have come into quite wide-spread use in the past decade 

• Thanks to a large span of applications and technical advances 

 

• Many solving techniques exploit duality of model search and deduction 

• Harnessing the interplay remains a throve of future opportunities 

• Beyond model-based techniques:  

• “Cubing”: Establish problem decomposition 

• “Strategies”: Prune search space that is no more likely to produce 
solutions 

 



Research Question: Guiding Search 

Problem: Tuned engines are prone to overfitting 

 

State of art: Tune input parameters (using ML) and code back-off schemes 

 

Opportunity: Use data-driven techniques to re-direct search  



Learning cubes using DNNs 

Goal: Choose most important case split 

 

Train DNN using unsat formulas: 

• Log conflict clauses  

• Use DRAT-Trim to extract unsat core 

• Score(v) := if v in core then 1 else 0. 

 

Idea: only variables in a core are useful to case 
split on 

 

DNN architecture: NeuroSAT (a graphical 
Neural Network) 

Experiment: 
• Generated 100,000 unsat  

problems from SAT  
competition 2014-2017 

• Trained network with  
cores from the training set 

• Integrated in SAT solvers 
glucose, MiniSAT, Z3 
by periodically refocusing 
case split queue 

• Evaluated on SAT2018 

• Solved +10%/+20% more 

 

[Selsam, B. SAT 2019] 



Background and Learnings 

• Clauses: 

 

• Graphical Network: 

 

• DRAT proof Trail:    

 • Learning: Access to DRAT proof trail enables 20/20 
hindsight for optimization. Makes RL less relevant. 

 

• Future: We could explore space of objective 
functions much more and instance specific uses.   

 



Research Question: Scaling Search 

Problem: How to use cloud resources to solve really-hard problems?  

 

State of art: Cube & Conquer in SAT solvers, Branch & Bound in MIP 

 

Opportunity: Use Azure infrastructure for scalable Cube & Conquer for SMT 



Cube, Cloud and Z3 

L0 worker 

L1 worker 

Solves and creates 

subgoals 

Azure 

Queue 

 
Cubes 

Formulas 

Solutions 

Configurations 

Blob Store 
Store and  
retrieve  
state 

Prepare  
initial goal 

get  
goal 

add  
goal 
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