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I Convolutional NN for images " LARGE dataset I Labels==experts time

many fine-grained object categories®’8%10:11 Here we demonstrate

classification of skin lesions usinf§ a single CNN, tdained end-to-end
from images directly, using only pixels and disease labels dg inputs. We

train a CNN using@ dataset of 129,450 clpnical images{two orders of

magnitude larger than previous datasets'>—consisting of 2,032 different

diseases. We test its performance against 21 board-certified
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Dermatologist-level classification of skin cancer
with deep neural networks
ett Kuprel'* 23, Justin Ko?, Sus

H y p e r p a ' a m e t e rS Andre Esteval*, Brett Kuprel'*, Roberto A. Novoa  Susan M. Swetter?+, Helen M. Blau’ & Sebastian Thrun®

Our CNN is trained using backpropagation. All layers of the network are fine-
tuned using the same global learning rate 0£0.001 and a decay factor of 16 every 30
epochs. We use RMSProp with a decay of 0.9, momentum of 0.9 and epsilon of 0.1.
We use Google’s TensorFlow" deep learning framework to train, validate and test
our network. During training, images are augmented by a factor of 720. Each image
is rotated randomly between 0° and 359°. The largest upright inscribed rectangle
is then cropped from the image, and is flipped vertically with a probability of 0.5.
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Challenges
in applying modern ML
to healthcare



Challenge 0: The Quest for Data

* For training.....




Data acquisition issues

Privacy:
Recording patients:
* General Data Protection Regulation — GDPR, HIPPA @ &P
* Scarce resource
* What is data anonymization?  Non homogenic
* Managers: better keep the data locked in the safe...  Complicated rec. at home

e Rare visits to lab

Labelled data: * Expensive devices
* Experts time is valuable e Etc.

* Nature paper used 21 dermatologists (on a subset of dataset)

Biomedical Engineers Awareness:
* Current defibrillators collect and transmit only a few seconds before/after a VF event
» Suppose you'd like to... predict the cardiac event minutes before it happen



Data Acquisition - the egg and the chicken




Automatic disease classification
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The loT Revolution | — IR e

Monitoring Devices & 0}
e Source of BIG DATA

e Source of Rich Data

Issues: |
e Battery (compute+communica
* Connectivity
* Resources

* Privacy




The 10T Revolution Il -
Life-Saving Devices

Additional issues:

* Autonomy

* Edge computing

* Collaboration with the cloud

* Security
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Challenge I: Human

in the
Heterogeneous wild with
Data wearable

Sources

Animal

Online Hospital
datasets data

Data collected: data

/

 On different animals

* Using different measurement devices \ {
At different times

* By different people

Training

: . data
=>» Different ranges, different scales,

shifts, drifts, .....
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Dermatologist-level classification of skin cancer
with deep neural networks
ett Kuprel'* 23, Justin Ko?, Sus

]
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Training algorithm. We use Google's Inception v3 CNN architecture pretrained
to 93.33% top-five accuracy on the 1,000 object clas ‘l': the
2014 ImageNet Challenge following ref. 9. We then remove the final classification
layer from the network and retrain it with our dataset, fine-tuning the parameters
across all layers. During training we resize each image to 299 x 299 pixels in order
to make it compatible with the original dimensions of the Inception v3 network
architecture and leverage the natural-image features learned by the ImageNet
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* Example: prediction of Atrial/Ventrical Fibrillation
* Must compare with individual-specific characteristics
* Personal data is .... well .... tiny
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Afimilk data - Cowlization

e ~30,000 dairy barns, x00-x000s cows in each

e 5 sensors on every cow
* Milk quality (e.g., fat), every 200cc
* Weather

* Food

* Genetic information
* Etc.

+

e Predict cow health

* Milk quality e
¥

AFRICA

Pacific Ocean



Challenge Ill: Noise
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Other sources of noise — PPG example




Challenge IV: corrupted data

[Aridor et.al 2003, Yadgar et.al 2015]

Training
* Problems: Denoising
* Missing values
 Errors ‘ . l
* Arbitrary noise g ) //A\\\.
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Challenge V: incorrect labels
[Palatin et.al 2008, Gabel et.al 2012]

e Common solution — more data
* Expensive manual labor of experts
* Assumption — most tagging are correct

* May sometimes apply clustering and then labeling of clusters
* Need to know the # of clusters
* Uses human-crafted features.

* Popular for non-medical data — generative models

e variational autoencoders

* Open —is this solution suitable for the medical domain?

encode > decode >
Inference Generative

Reconstructed
Image

Distribution



Clustering
for
Labels

1

Dermatologist-level classification of skin cancer

with deep neural networks

Epidermal lesions Melanocytic lesions Melanocytic lesions (dermoscopy)

Benign

Malignant

example images from two disease classes. These test images highlight the
difficulty of malignant versus benign discernment for the three medically
critical classification tasks we consider: epidermal lesions, melanocytic
lesions and melanocytic lesions visualized with a dermoscope. Example
images reprinted with permission from the Edinburgh Dermofit Library

Andre Esteva'*, Brett Kuprel'*, Roberto A. Novoa??, Justin Ko, Susan M. Swetter®4, Helen M. Blau® & Sebastian Thrun® ( https: ‘, jlic ensing. eri : e d ) ac : ukl’i/ SO ftware‘,de rmoﬁt _ image _ libraryihtml) .

Es



Challenge VI:
non-symmetric
classes

[Keren et.al 2006+2008+2018, Friedman et.al 2014]

Problems:

1. Not enough labeled examples for every class
2. Variation in # of labeled examples per class

Dermatologist-level classification of skin cancer
with deep neural networks

Andre Esteva'*, Brett Kuprel'*, Roberto A. Novoa??, Justin Ko, Susan M. Swetter®4, Helen M. Blau® & Sebastian Thrun®
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Abrasion
Rosacea

Skin disease

Angiosarcoma

carcinoma
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keratosis j
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carcinomal

Figure 2 | A schematic illustration of the taxonomy and example test
set images. a, A subset of the top of the tree-structured taxonomy of skin
disease. The full taxonomy contains 2,032 diseases and is organized based
on visual and clinical similarity of diseases. Red indicates malignant,



Challenge VII:

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Model Compaction
[Silberstein et.al 2008, Gabel et.al 2014]
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e Recentideas:

Replace with memory tables



Challenge VIII: on-the-fly analytics

[Schuster et.al 2001, Wolff et.al 2005, Sharfman et.al 2008,
Keren et.al 2012, Friedman et.al 2014, Kolchinsky et.al 2018]

input layer

hidden layer 1 hidden layer 2  hidden layer 3
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No false negatives!!!
Not too many false positives



Challenge IX: change-point detection

Update the model

- Can offload
Infinite stream CPU or battery some model
of (occasionally) limited device computations
labeled samples to the cloud

Data distribution changes over time,
requiring that we maintain an

accurate model
Trained model




Challenge X:

il ? Minimizing
e Communication

Family Member

\’/

Hospital Staff

[Sagy et.al 2010, Verner et.
al 2011+2012, Keren et.al
2016+2014+2016, Lazerson
al 2015, Friedman et.al
18]

detection

New model prediction

construction

Monitoring
model
validity

monitoring

 What is “important” data?

* The concept of a “safe zone”



Challenge Xl: Cyber
Security

Data:
* Privacy preserving; anonymization

» Standards for medical data (GDPR, HIPAA,...).

loT security:

* Profiling devices in the wild

* Anomaly detection; pattern detection

* Imposing structure over million devices

* Enabling analytics over extremely large distributed
systems
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Challenge Xlll: long-term
trend predictions

* How will this condition develop?

* How will average behavior look in 10 years
from now?

e How will it look like when *this* medicine
is given?

° ... When this exercise routine is
practiced?

* Etc.

Parkinson’s Gait
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swinging
TN Rigidity and
A/ trembling of
\ extremities

Shuffling gait,
with short steps




My team
@Technion

Learning:

* Neural Networks

* Transfer learning

* Monitoring, anomaly detection
* SGD acceleration

Scalable systems:
* Distributed computing
 Parallel Computing

Data management & Systems:
 Scalablility

* Data streams

* Edge computing

* Communication minimization

Cyber Security: B
* loT security
* Privacy




Questions?




