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I Convolutional NN for imageH LARGE datas{et Labels==experts timg¢

many fine-grained object categories®’8%10:11 Here we demonstrate

ained end-to-end

classification of skin lesions usinf§ a single CNN
from images directly, using only pixels and disease labels dg inputs. We

train a CNN using@ dataset of 129,450 clpnical images{two orders of

magnitude larger than previous datasets'>—consisting of 2,032 different

diseases. We test its performance against 21 board-certified




The Neural Network Revolution
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Our CNN is trained using backpropagation. All layers of the network are fine-
tuned using the same global learning rate 0£0.001 and a decay factor of 16 every 30
epochs. We use RMSProp with a decay of 0.9, momentum of 0.9 and epsilon of 0.1.
We use Google’s TensorFlow" deep learning framework to train, validate and test
our network. During training, images are augmented by a factor of 720. Each image
is rotated randomly between 0° and 359°. The largest upright inscribed rectangle
is then cropped from the image, and is flipped vertically with a probability of 0.5.
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Challenges
In applying modern ML
to healthcare



ChallengeD: The Questfor Data
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Data acquisition Issues

Privacy: Recording patients:
A General Data Protection RegulatiQicDPR, HI . A ScarcegréDsource.
AWhat is data anonymization? A Non homogenic

Aal yI ISNAEY 0SUUSNI 1 SSLI UK SR dBrhplichtedfred. @thént
A Rare visits to lab

Labelled data: A Expensive devices
AExperts time is valuable A Etc.

ANature paper used 21 dermatologists (on a subset of dataset)

Biomedical Engineers Awareness:
ACurrent defibrillators collect and transmit only a few seconds before/after a VF eve
A{ dzLJLJ12aS e2dzQR fA1S G2X LINBRAOU GKS OF



Data Acquisition the egg and the chicken




Automatic disease classification
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https://en.wikipedia.org/wiki/Isoelectric_line
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Monitoring Devices © Ly

ASource of BIG DATA
ASource of Rich Data

Issues:

AConnectivity
AResources
APrivacy




The loT Revolution H
Life-Saving Devices

Additional i1ssues:
AAutonomy

AEdge computing
ACollaboration with the cloud

ASecurity



