
Method for Analysis of Code-reuse Attacks

Reverse Engineering of ROP Exploits

Alexey Vishnyakov 〈vishnya@ispras.ru〉
Alexey Nurmukhametov 〈oleshka@ispras.ru〉
Shamil Kurmangaleev 〈kursh@ispras.ru〉
Sergey Gaisaryan 〈ssg@ispras.ru〉
23 November 2018

ISP RAS

Vulnerabilities by Year

Number (tens of thousands) of new vulnerabilities (CVE) by year

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

0.25

0.5

0.75

1

1.25

1.5

Source: cvedetails.com/browse-by-date.php 1/19

https://www.cvedetails.com/browse-by-date.php

Motivation

• Deliberate exploitation of vulnerabilities can lead to information

disclosure, financial losses, or even greater damage

• Big companies perform computer security incidents analysis

• Return-oriented programming (ROP) is an exploitation technique

that can be used in presence of modern operating systems

protections

• The main contribution of our work is to simplify ROP exploits

reverse engineering

2/19

Stack Buffer Overflow

• Buffer Overflow Vulnerability exists

when a program attempts to put

more data in a buffer than it can hold

• Buffer overflow causes a return

address overwrite

B
u

ff
er

ov
er

fl
ow

d
ir

ec
ti

on

...

argv

argc

Return address

Old ebp

Buffer

...

3/19

Stack Smashing and Executable Space Protection

Stack Smashing:

• Place payload on the stack

• Overwrite return address with a

pointer to the payload

• Execute arbitrary code

Executable Space Protection:

• Executable space protection

(DEP) marks memory regions as

non-executable

• In particular, the execution of

malicious code placed on the stack is

forbidden

...

Payload

Payload pointer

‘Corrupted‘ ebp

Buffer

...

4/19

Return-to-libc Attack

Return-to-libc attack bypasses DEP:

• Overwrite return address with a

library function address, for instance,

system

• Prepare function arguments on the

stack

"/bin/sh"

command

system address

‘Corrupted‘ ebp

Buffer

...

5/19

Address Space Layout Randomization

• Address space layout randomization (ASLR) is an operating

system protection that randomly arranges the address space

positions of key data areas of a process (base of the executable,

stack, heap, dynamic libraries)

• Library function address is unknown before the program load

• Modern ASLR implementations leave some program address space

areas non-randomized:

• In Linux the base of the executable is often left constant

• Some Windows dynamic libraries are loaded at constant offsets

6/19

Return-oriented Programming

• Return-oriented Programming (ROP) is a code-reuse attack that

allows an attacker to bypass DEP in presence of non-randomized

memory areas

• Attacker uses gadgets – code blocks from non-randomized memory

address space

• Each gadget performs some computation (for instance, adds two

registers) and transfers control to the next gadget

• Gadgets are chained together and executed consequently

• Thus, a gadget chain executes a malicious payload

7/19

ROP gadgets

• Gadget is an instruction sequence – in non-randomized executable

memory area – that ends with a control transfer instruction (usually

with ret)

• Because x86 architecture doesn’t require instruction aligning, an

instruction sequence can contain a gadget that is not present in

original program code?

f7c7070000000f9545c3 → test edi, 0x7 ;

setnz BYTE PTR [ebp-0x3d]

c7070000000f9545c3 → mov DWORD PTR [edi], 0xf000000 ;

xchg ebp, eax ; inc ebp ; ret

• Gadget addresses are placed on the stack starting from the return

address so that the first gadget transfers control to the second one,

the second one – to the third one, and so on

?Jonathan Salwan. An introduction to the Return Oriented Programming and ROP chain generation 8/19

http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf

ROP Chain Example

Write memValue to memAddr

H
ig

h
er

m
em

or
y

...

4th gadget address

3rd gadget address mov [edx], eax ; ret

memAddr

2nd gadget address pop edx ; ret

memValue

1st gadget address pop eax ; ret
Previous return address location

...

9/19

ROP Chain is a Program

• ROP chain is a program for a virtual machine defined by an

executable

• Stack pointer acts as a program counter

• Instruction opcodes (gadget addresses) and operands are placed on

the stack

Virtual machine

instructions:

mov [edx], eax

mov edx, memAddr

mov eax, memValue

4th gadget address Real instructions:

3rd gadget address mov [edx], eax ; ret

memAddr

2nd gadget address pop edx ; ret

memValue

1st gadget address pop eax ; ret

10/19

Problem Definition

Given a binary ROP chain, we should:

• Restore a gadget chain

• Determine semantics of each gadget

• Restore function calls with arguments

• Detect system calls

11/19

Gadget Frame

• In order to split ROP chain into

gadgets, we define a gadget frame

similar to x86 stack frame

• Frame size

FrameSize = 16

• Next gadget address

NextAddr = [ESP + 4]

...

Next gadget

‘Loaded‘ eax

pop eax ; ret 8

...

12/19

Gadget Semantic Definition

• Gadget type is defined semantically by a postcondition – a boolean

predicate that must always be true after executing the gadget?

• MoveRegG: OutReg ← InReg

• LoadConstG: OutReg ← [SP + Offset]

• Set of gadget types is an instruction set architecture (ISA)

• Gadget function is described with a set of parameterized types that

satisfy the gadget

• Gadget classification determines a set of possible types and

parameters

PUSH EAX

POP EBX

POP ECX

RET

MoveRegG: EBX ← EAX

LoadConstG: ECX ← [ESP + 0]

?Schwartz, Edward J., Thanassis Avgerinos, and David Brumley. ”Q: Exploit Hardening Made Easy.” USENIX
Security Symposium. 2011. 13/19

Gadget Classification

• We perform classification after analysing effects of gadget execution

on different inputs

• Gadget instructions are translated into the intermediate

representation?

• Then the interpretation of intermediate representation starts

• All memory and register accesses are tracked

• Initial values of registers and memory areas are generated randomly

• As a result of interpretation, the initial and final values of registers

and memory will be obtained

• We perform several more interpretations with different inputs and

gather a list of types and parameters with true postconditions for all

executions

?Padaryan V.A., Soloviev M.A., Kononov A.I. ”Modeling operational semantics of machine instructions (in
Russian).” Trudy ISP RAN/Proc. ISP RAS. Vol. 19. 165-186. 2011. 14/19

ROP Chain Semantics Analysis

• Binary ROP chain is loaded onto the shadow stack

• Gadgets are classified one by one according to frame info

• Shadow memory is used to restore values of registers and memory

before functions and system calls

• Initially, a shadow memory is empty

• We perform several interpretations of gadget with a shadow memory

as an initial state

• Final values of registers and memory – unchanged from execution to

execution – are added to shadow memory

15/19

Restoring Functions and System Calls

• Names of indirect function calls are gathered from import tables

JMP [EAX]

• Linux system calls and functions prototypes can be found in

man-pages

• System call number and arguments are gathered from the shadow

memory

16/19

Example: MongoDB Linux x86 (CVE-2013-1892)

Binary representation of the ROP chain:

00000000 68 f7 16 08 07 6d 66 08 00 70 33 31 00 20 00 00 |h....mf..p31. ..|

00000010 07 00 00 00 31 00 00 00 ff ff ff ff 00 00 00 00 |....1...........|

00000020 00 00 00 00 c8 e4 16 08 00 70 33 31 00 70 33 31 |.........p31.p31|

00000030 00 00 0b 0c 00 20 00 00 |..... ..|

00000038

17/19

Example: MongoDB Linux x86 (CVE-2013-1892)

0x0816f768 : Asm : JMP DWORD PTR [08A1AF84h]

0x0816f768 : Call [0x8a1af84]

0x0816f768 : mmap(0x31337000, 0x2000, 0x7, 0x31, 0xffffffff, 0x0)

from libc.so.6

0x08666d07 : Asm : ADD ESP, 00000014h ; POP EBX ; POP EBP ; RET

0x08666d07 : LoadConstG : EBX <- [ESP+20], EBP <- [ESP+24] :

NextAddr=[ESP+28], FrameSize=32

0x08666d07 : ShiftStackG : ESP +<- 28

0x08666d07 : Values : EBX <- 0x0 ("\x00\x00\x00\x00"),

EBP <- 0x0 ("\x00\x00\x00\x00")

0x0816e4c8 : Asm : JMP DWORD PTR [08A1AADCh]

0x0816e4c8 : Call [0x8a1aadc]

0x0816e4c8 : memcpy(0x31337000, 0xc0b0000, 0x2000) from libc.so.6

0x31337000 : Call 0x31337000

0x31337000 : Values : [ESP+4] <- 0xc0b0000, [ESP+8] <- 0x2000

18/19

Results

Application CVE Number Platform Gadgets from

MongoDB CVE-2013-1892 Linux x86 mongod

Nagios3 CVE-2012-6096 Linux x86 history.cgi

ProFTPd CVE-2010-4221 Linux x86 proftpd

Nginx CVE-2013-2028 Linux x64 nginx

AbsoluteFTP CVE-2011-5164 Windows x86 MFC42.dll

ComSndFTP N/A 2012-06-08 Windows x86 msvcrt.dll

19/19

Extra

Gadget Verification

• Gadget classification provides a set of postconditions describing

possible gadget semantics

• Gadget verification formally proves these postconditions for each

input

• Gadget verification implementation is based on Triton dynamic

symbolic execution engine

• Initially, all registers are assigned to free symbolic variables

• Symbolic memory is implemented via select and store operations

over SMT array

• Symbolic execution of gadget instructions generates SMT formulas

over constants and variables, it also updates the symbolic state of

registers and memory

• Postcondition validity is checked via unsatisfiability of its negation

Triton: github.com/JonathanSalwan/Triton

https://github.com/JonathanSalwan/Triton

Gadget Verification Example

ArithmeticLoadG : rbx ← rbx + [rax]

Step Symbolic state Instruction Set of symbolic expressions

initial

M, rax = φ1, rbx = φ2,

rcx = φ3, rsp = φ4,

rip = φ5

— S0 = ∅

1 rcx = φ6 mov rcx, [rax] S1 = S0 ∪ {φ6 = M[φ1]}
2 rbx = φ7 add rbx, rcx S2 = S1 ∪ {φ7 = φ2 + φ6}

final rip = φ8, rsp = φ9 ret
S3 = S2 ∪ {φ8 = M[φ4],

φ9 = φ4 + 8}
Semantic definition Semantic verification

verify

(final(rbx) = initial(rbx) + initial(M[rax])) ∧
(final(rip) = initial(M[rsp])) ∧
(final(rsp) = initial(rsp) + 8)

¬((φ7 = φ2 + M[φ1]) ∧
(φ8 = M[φ4]) ∧
(φ9 = φ4 + 8)) is UNSAT

	Motivation
	Stack Buffer Overflow
	Stack Smashing and Executable Space Protection (DEP)
	Return-to-libc Attack
	Address Space Layout Randomization (ASLR)
	Return-oriented Programming
	Problem Definition
	Gadget Frame
	Method for Analysis of Code-reuse Attacks
	Gadget Semantic Definition
	Gadget Classification
	ROP Chain Semantics Analysis

	Results
	Appendix
	Gadget Verification

