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Vulnerabilities by Year

Number (tens of thousands) of new vulnerabilities (CVE) by year
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Motivation

• Deliberate exploitation of vulnerabilities can lead to information

disclosure, financial losses, or even greater damage

• Big companies perform computer security incidents analysis

• Return-oriented programming (ROP) is an exploitation technique

that can be used in presence of modern operating systems

protections

• The main contribution of our work is to simplify ROP exploits

reverse engineering
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Stack Buffer Overflow

• Buffer Overflow Vulnerability exists

when a program attempts to put

more data in a buffer than it can hold

• Buffer overflow causes a return

address overwrite
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Stack Smashing and Executable Space Protection

Stack Smashing:

• Place payload on the stack

• Overwrite return address with a

pointer to the payload

• Execute arbitrary code

Executable Space Protection:

• Executable space protection

(DEP) marks memory regions as

non-executable

• In particular, the execution of

malicious code placed on the stack is

forbidden

...

Payload

Payload pointer

‘Corrupted‘ ebp

Buffer
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Return-to-libc Attack

Return-to-libc attack bypasses DEP:

• Overwrite return address with a

library function address, for instance,

system

• Prepare function arguments on the

stack

"/bin/sh"

command

system address

‘Corrupted‘ ebp

Buffer

...
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Address Space Layout Randomization

• Address space layout randomization (ASLR) is an operating

system protection that randomly arranges the address space

positions of key data areas of a process (base of the executable,

stack, heap, dynamic libraries)

• Library function address is unknown before the program load

• Modern ASLR implementations leave some program address space

areas non-randomized:

• In Linux the base of the executable is often left constant

• Some Windows dynamic libraries are loaded at constant offsets
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Return-oriented Programming

• Return-oriented Programming (ROP) is a code-reuse attack that

allows an attacker to bypass DEP in presence of non-randomized

memory areas

• Attacker uses gadgets – code blocks from non-randomized memory

address space

• Each gadget performs some computation (for instance, adds two

registers) and transfers control to the next gadget

• Gadgets are chained together and executed consequently

• Thus, a gadget chain executes a malicious payload
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ROP gadgets

• Gadget is an instruction sequence – in non-randomized executable

memory area – that ends with a control transfer instruction (usually

with ret)

• Because x86 architecture doesn’t require instruction aligning, an

instruction sequence can contain a gadget that is not present in

original program code?

f7c7070000000f9545c3 → test edi, 0x7 ;

setnz BYTE PTR [ebp-0x3d]

c7070000000f9545c3 → mov DWORD PTR [edi], 0xf000000 ;

xchg ebp, eax ; inc ebp ; ret

• Gadget addresses are placed on the stack starting from the return

address so that the first gadget transfers control to the second one,

the second one – to the third one, and so on

?Jonathan Salwan. An introduction to the Return Oriented Programming and ROP chain generation 8/19

http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf


ROP Chain Example

Write memValue to memAddr
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4th gadget address

3rd gadget address mov [edx], eax ; ret

memAddr

2nd gadget address pop edx ; ret

memValue

1st gadget address pop eax ; ret
Previous return address location

...
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ROP Chain is a Program

• ROP chain is a program for a virtual machine defined by an

executable

• Stack pointer acts as a program counter

• Instruction opcodes (gadget addresses) and operands are placed on

the stack

Virtual machine

instructions:

mov [edx], eax

mov edx, memAddr

mov eax, memValue

4th gadget address Real instructions:

3rd gadget address mov [edx], eax ; ret

memAddr

2nd gadget address pop edx ; ret

memValue

1st gadget address pop eax ; ret
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Problem Definition

Given a binary ROP chain, we should:

• Restore a gadget chain

• Determine semantics of each gadget

• Restore function calls with arguments

• Detect system calls
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Gadget Frame

• In order to split ROP chain into

gadgets, we define a gadget frame

similar to x86 stack frame

• Frame size

FrameSize = 16

• Next gadget address

NextAddr = [ESP + 4]

...

Next gadget

‘Loaded‘ eax

pop eax ; ret 8

...
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Gadget Semantic Definition

• Gadget type is defined semantically by a postcondition – a boolean

predicate that must always be true after executing the gadget?

• MoveRegG: OutReg ← InReg

• LoadConstG: OutReg ← [SP + Offset]

• Set of gadget types is an instruction set architecture (ISA)

• Gadget function is described with a set of parameterized types that

satisfy the gadget

• Gadget classification determines a set of possible types and

parameters

PUSH EAX

POP EBX

POP ECX

RET

MoveRegG: EBX ← EAX

LoadConstG: ECX ← [ESP + 0]

?Schwartz, Edward J., Thanassis Avgerinos, and David Brumley. ”Q: Exploit Hardening Made Easy.” USENIX
Security Symposium. 2011. 13/19



Gadget Classification

• We perform classification after analysing effects of gadget execution

on different inputs

• Gadget instructions are translated into the intermediate

representation?

• Then the interpretation of intermediate representation starts

• All memory and register accesses are tracked

• Initial values of registers and memory areas are generated randomly

• As a result of interpretation, the initial and final values of registers

and memory will be obtained

• We perform several more interpretations with different inputs and

gather a list of types and parameters with true postconditions for all

executions

?Padaryan V.A., Soloviev M.A., Kononov A.I. ”Modeling operational semantics of machine instructions (in
Russian).” Trudy ISP RAN/Proc. ISP RAS. Vol. 19. 165-186. 2011. 14/19



ROP Chain Semantics Analysis

• Binary ROP chain is loaded onto the shadow stack

• Gadgets are classified one by one according to frame info

• Shadow memory is used to restore values of registers and memory

before functions and system calls

• Initially, a shadow memory is empty

• We perform several interpretations of gadget with a shadow memory

as an initial state

• Final values of registers and memory – unchanged from execution to

execution – are added to shadow memory
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Restoring Functions and System Calls

• Names of indirect function calls are gathered from import tables

JMP [EAX]

• Linux system calls and functions prototypes can be found in

man-pages

• System call number and arguments are gathered from the shadow

memory

16/19



Example: MongoDB Linux x86 (CVE-2013-1892)

Binary representation of the ROP chain:

00000000 68 f7 16 08 07 6d 66 08 00 70 33 31 00 20 00 00 |h....mf..p31. ..|

00000010 07 00 00 00 31 00 00 00 ff ff ff ff 00 00 00 00 |....1...........|

00000020 00 00 00 00 c8 e4 16 08 00 70 33 31 00 70 33 31 |.........p31.p31|

00000030 00 00 0b 0c 00 20 00 00 |..... ..|

00000038
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Example: MongoDB Linux x86 (CVE-2013-1892)

0x0816f768 : Asm : JMP DWORD PTR [08A1AF84h]

0x0816f768 : Call [0x8a1af84]

0x0816f768 : mmap(0x31337000, 0x2000, 0x7, 0x31, 0xffffffff, 0x0)

from libc.so.6

0x08666d07 : Asm : ADD ESP, 00000014h ; POP EBX ; POP EBP ; RET

0x08666d07 : LoadConstG : EBX <- [ESP+20], EBP <- [ESP+24] :

NextAddr=[ESP+28], FrameSize=32

0x08666d07 : ShiftStackG : ESP +<- 28

0x08666d07 : Values : EBX <- 0x0 ("\x00\x00\x00\x00"),

EBP <- 0x0 ("\x00\x00\x00\x00")

0x0816e4c8 : Asm : JMP DWORD PTR [08A1AADCh]

0x0816e4c8 : Call [0x8a1aadc]

0x0816e4c8 : memcpy(0x31337000, 0xc0b0000, 0x2000) from libc.so.6

0x31337000 : Call 0x31337000

0x31337000 : Values : [ESP+4] <- 0xc0b0000, [ESP+8] <- 0x2000
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Results

Application CVE Number Platform Gadgets from

MongoDB CVE-2013-1892 Linux x86 mongod

Nagios3 CVE-2012-6096 Linux x86 history.cgi

ProFTPd CVE-2010-4221 Linux x86 proftpd

Nginx CVE-2013-2028 Linux x64 nginx

AbsoluteFTP CVE-2011-5164 Windows x86 MFC42.dll

ComSndFTP N/A 2012-06-08 Windows x86 msvcrt.dll
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Extra



Gadget Verification

• Gadget classification provides a set of postconditions describing

possible gadget semantics

• Gadget verification formally proves these postconditions for each

input

• Gadget verification implementation is based on Triton dynamic

symbolic execution engine

• Initially, all registers are assigned to free symbolic variables

• Symbolic memory is implemented via select and store operations

over SMT array

• Symbolic execution of gadget instructions generates SMT formulas

over constants and variables, it also updates the symbolic state of

registers and memory

• Postcondition validity is checked via unsatisfiability of its negation

Triton: github.com/JonathanSalwan/Triton

https://github.com/JonathanSalwan/Triton


Gadget Verification Example

ArithmeticLoadG : rbx ← rbx + [rax ]

Step Symbolic state Instruction Set of symbolic expressions

initial

M, rax = φ1, rbx = φ2,

rcx = φ3, rsp = φ4,

rip = φ5

— S0 = ∅

1 rcx = φ6 mov rcx, [rax] S1 = S0 ∪ {φ6 = M[φ1]}
2 rbx = φ7 add rbx, rcx S2 = S1 ∪ {φ7 = φ2 + φ6}

final rip = φ8, rsp = φ9 ret
S3 = S2 ∪ {φ8 = M[φ4],

φ9 = φ4 + 8}
Semantic definition Semantic verification

verify

(final(rbx) = initial(rbx) + initial(M[rax ])) ∧
(final(rip) = initial(M[rsp])) ∧
(final(rsp) = initial(rsp) + 8)

¬((φ7 = φ2 + M[φ1]) ∧
(φ8 = M[φ4]) ∧
(φ9 = φ4 + 8)) is UNSAT
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