
OS-agnostic identification of 

Processes and Threads in 

virtual machine
I.A. Vasiliev

P.M. Dovgalyuk

M.A. Klimushenkova



Where the task came from:

Cons of whole-system instrumentation:

- causes a slowdown of system under study

- produces redundant data during analysis process

Pros of selective instrumentation:

- analysis of specific processes and threads

- overhead minimization

2



Existing approaches

Virtuoso: works inside of the system under study; does not support ASLR

DECAF: makes use of the kernel structures; strictly dependent on the OS

PEMU/Exterior: uses non-reliable method for threads identification (masking 

lower 12 bits of the KSP)

3



Objective

Find a way to uniquely identify user threads and processes in the system under 

study within a virtual machine, without relying on the kernel data structures

4



Identification of processes

Each process has corresponding PGD value

It is sufficient to monitor the corresponding register (cr3)

5



Implementation of process identification

By monitoring the values of cr3 register all the time, we have the information about 

the current set of processes operating in the system and can freely begin and 

complete instrumentation and analysis of any number of processes at any time. 

6



Identification of threads

Observation:

- Since the same PGD can correspond to different threads, this value by itself 

is not enough for identification of threads

- Each thread got to have its own stack for storing local variables and return 

addresses. However, the register, containing the SP value changes 

constantly during the the usual work process

Hypothesis: to identify the thread, you can use a pair of “register, containing the 

value of PGD” and “a range of SP values”

7



Changes of esp value in kernel mode

Hypothesis: thread switches occur in kernel 

space, which means that by monitoring the 

value of esp register before and after switching 

to kernel space, we can determine whether or 

not the thread was switched

Reality: practice test has shown, that this 

assumption is not always true, and often the 

esp value change does not correspond to 

thread switching

8

...

MOV EAX, 00000020h

MOV EDX, 7FFE0300h

CALL DWORD PTR [EDX]

MOV EDX, ESP

SYSENTER

...

IRETD

XOR EBP, EBP

PUSH EBX

...

esp = 0x9afd20

tid = 0x570

esp = 0x9afffc

tid = 0x570

NtContinue



Defining ranges

Creation of the new range:

- pop esp or mov esp with a esp 

value not falling into any of the 

existing ranges

- switching from the kernel space 

to user space

9

Expansion of the existing range:

- other instructions, explicitly or 

implicitly changing the esp 

value, including call and ret 

group instructions



Additional conditions:

10

Problem Solution

multiple ranges

⇕
single thread

Combining of 

intersecting ranges



Identification of fibers

Using this approach allowed identifying fibers during system operation, which 

would also be an impossible task using only information about switching from the 

kernel space or using information from kernel structures

11



Use cases:

- Debugging of specific processes, threads and even fibers

- Making a call stack to analyze program workflow

- Narrow approach to use of instrumentation, to achieve more precise results

12



Using system calls information

For processes: to detect the termination of the process, you can monitor the 

corresponding system call (NtTerminateProcess)

For threads: a problem, with multiple threads being corresponding to a single 

range, can be solved by monitoring a specific system call (NtTerminateThread)

The use of system calls, contrary to the use of kernel structures, allows to simplify 

the porting of the algorithm for previously implemented OS-families. Plus, the 

information about system calls is usually well documented, as opposed to 

information about kernel structures.

13



Thread Identification results

for Windows XP: ~95% accuracy of range to thread relation. An exception: rare 

situations when one thread have multiple corresponding ranges

for Debian: the first tests showed that the algorithm is functional, but it’s too early 

to talk about its accuracy, because no reliable source for thread comparison was 

selected yet

14



Hypothesis conclusions

The result obtained in the test environment can serve as confirmation of the 

hypothesis about the possibility of identifying threads, having minimal knowledge 

of the system and relying on the ranges of SP values.

Achieving OS-independence comes down to minimizing the use of system 

information.

At the current state, the implementation of the algorithm is not completely reliable 

and needs further improvement before it can be used in solving real problems.

15



Future work

- Finding ways to improve the accuracy of the implementation

If we succeed:

- Adaptation of this approach for Linux

- Adaptation of this approach for other process architectures

16


