Generation of code for reading data from the

declarative file format specifications written in
language FlexT

Alexei Hmelnov, Andrey Mikhailov

Matrosov Institute for System Dynamics and
Control Theory of Siberian Branch of Russian Academy of Sciences
Irkutsk, Russia
http://idstu.irk.ru

November 23, 2018
Moscow
The Ivannikov ISP RAS Open Conference

A. Hmelnov, A. Mikhailov (ISDCT SB RAS)

http://idstu.irk.ru

The language FlexT

FlexT - Flexible Types.
Flexible types - the types, that can adjust to the data (sizes and

subitem offsets may vary).

The main goals of the language FlexT:

m provide the instrument, that can help us to explore and understand
the contents of the binary files using format specifications
(check and view data using specification);

m check whether the format specification is correct using the
samples of the format data (check specification using data).

The FlexT data viewer makes the binary data transparent.

A. Hmelnov, A. Mikhailov (ISDCT SB RAS)

The advantages of specifications

in comparison with the possible sources of information about a file
format:

m documentation The vast majority of the format specifications
written in natural language contain errors and ambiguities,
which can be detected and fixed by trying to apply the various
versions of specification to the real data to find the correct
variant of understanding of the format description

source code The information about a file format may also be
obtained from the source code of a program that works with
it. But the code contains a lot of unessential details of some
concrete way of data processing. So, the resulting specification
will be much more concise and understandable

data samples We have a successful experience of reverse
engineering of some file formats using just the samples of data

A. Hmelnov, A. Mikhailov (ISDCT SB RAS)

Generation of data reading co

m The format specifications are required to write a correct program,
that should work with the files of the format

m Because the FlexT language data types look similar to that of imperative
languages, it is possible to immediately use some parts of specification
to declare the data types, constants, and so on, which are required to
write the data processing code. Anyway the process of writing the
code manually is still time-consuming and error-prone

m So, we have implemented the code generator, which can automatically
produce the data reading code in imperative languages from the
FlexT specifications

m By its expressive power the FlexT language outperforms the other
projects developing the binary format specifications, so the task of
code generation for the FlexT specifications is rather nontrivial

m By now we have implemented the code generation for the most
widely used FlexT data types, but some complex types are not supported
yet

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 4

Features of the FlexT language

m The major part of the information about a file format is represented
by the data type declarations

m In contrast to the data types of imperative programming languages,
the FlexT data types can contain data elements, the size of
which is determined by the specific data represented in the
format. Thus, we can say that the types flexibly adjust to the
data

m After defining the data types, it is required to specify the placement
in memory of some data elements which have some of these
types

m The language syntax was chosen to be well-understandable by
human reader

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 5

Parameters and properties of data types

m Data types can have a number of properties (depends on the
kind of the type)

m For example, the size and the number of elements are the properties
of arrays, and the selected case number is the property of
variants

m Each data type has the property Size

m The values of the properties can be specified in the statements
of type declaration, and also by expressions that compute the
value of this property using the values and properties of the
nested data elements, and using the values of the parameters of
the type

m The parameters in the type declaration represent the information

that needs to be specified additionally when the type is used
(called)

m Almost all the FlexT data types have the bit-oriented versions

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 6

FlexT data types (1)

Type Example Description/purpose
Integer® differ by the size and the presence of a sign
num- (6)
Empty? void the type of size 0, marks a place in memory
Charac- char, wchar, wcharr In the selected character encoding or Unicode
ters® with the byte orders LSB or MSB
Enumera- specifies the names of constants of the basic
tion? enum byte (A=1,B,C) data type
Term j . simplifies description of encoding of machine
enumera- enum TBit8 fields (instructions, specifies the bit fields, the
tion RO: TReg @0.3,...) presence of which is determined by the
of (remaining bits of the number
rts (R0O) = 000020 _,...)
Set of bits? gives the name to bits, the bits can be
set 8 of (designated by their numbers (the symbol ’=’
OLD = 0x02, ...) after the name) or masks (the symbol *~’)
Record? Sequential placement in memory of named data
struc elements, which may have different types
Byte Len
array [@.Len] of Char S
ends
Variant? Selects the content type by the external

case @.Kind of

vkByte: Byte
else ulong
endc

information

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 7

FlexT data types (2)

Type Example Description/purpose
Type Selects the content type by internal
check?® try information (the first type, which satisfies its

FN: TFntNum
Op: TDVIOp
endt

correctness condition)

Array? Consecutive placement of the constituent parts
array [@.Len] 0£ str of the same type in memory (the sizes of which
array of str ?Q[0]= may vary). It may be limited by the number of

O!byte; elements, the total size, or the stop condition
Raw data® Uninterpreted data, which is displayed as a hex
raw [@.S] dump
Align- . Skips unused data to align at the relative to the
ment? align 16 at &Q; base address offset, which is a multiple of the
specified value
Pointer Uses the value of the base type for specifying
~TTable near=DWORD, the address (for files - the file offset) of the data
ref=Q: Baset@; of the referenced type in memory
Forward allows to describe cyclic dependencies between
declara- forward data types
tion?
Machine machine code disassembling
instructions codes of TOpPDP ?(@.Op

>=TWOpCode. br)and ...;

ASupported by the reader code generator

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 8

The main principles of our approach to code generation

(1)

m We generate the source code, which would look like that carefully
written by hand (which may be very eager and relentless). It should
produce for us everything we would like to have, but it would be too
time consuming to write all that ourselves

m The data reader should give a random access to the various data
members and should not be limited by the sequential reading order

m If it is possible to represent some portion of the data by a static data
type of the target imperative language, e.g. record (structure) or array,
it should be done this way

m To get the random access to the file contents we use the file mapping.

m The simple static data structures are represented by the typed pointers
to their location in the mapped file memory, and for the more complex
dynamic data structures we generate special classes, which can store
all the information necessary to access the data of this type (the data
accessors)

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 9

The main principles of our approach to code generation

(2)

m The data reader for a file format should have the methods, which
allow to access all the variables declared in the specification. These
methods should return the typed pointers for the variables of the
static types and the corresponding data accessor class instances
for the variables of the dynamic types. Whereas the data accessors
provide access to the pointers or accessors of their data elements and
so on

m We create the data accessors on demand, because many scenarios of
the data reader usage will not work with the entire contents of the
file

m The programmer may dispose of the data accessor after using it. It
allows to perform, for example, some sequential data reading with a
minimum additional memory consumption

m The code generation is performed using an intermediate representation,
which describes the main features of a general imperative language

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 10

The bit pointers and bit-oriented data types

m The FlexT data types may be not only byte-oriented but also bit-oriented.
m The address of a bit-oriented data member is the address of its starting bit.

m To represent the bit pointers we use a special simple class, which stores the pointer to
byte as well as the number of the bit in the byte.

m The interpretation of the bit number depends on the byte order (for LSB the numeration
starts from the lowest bit of the byte, and for MSB - from the highest).

m The bit pointer itself is byte order agnostic: it provides the methods, which allow to
get the required number of bits at the bit address for both the LSB and the MSB byte
orders.

m The bit-oriented data accessors use the bit pointers according to their sizes and bit
orders.

m For the static bit-oriented data types we generate the lightweight classes, which inherit
from the class of bit pointer.

m The lightweight classes for the static bit-oriented records for each their field have the
corresponding method, which returns the value of the field, if the field is numeric, etc,
and the lightweight accessor, if the field is more complex.

m The lightweight accessors are created on demand by the functions, which return them.

m On the other hand, the dynamic bit-oriented FlexT data types still require the full
accessor classes.

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 11

static data typ

FlexT

Pascal

num-+ (4)

LongWord

array [4] of byte

array [0..3] of byte

struc record
long X X: Longlnt;
long Y Y: Longlnt;
ends end
num-+(3) TInt3 = packed object

protected

FMem: array [0..2]of Byte;
public

function Value: Integer;
end

A. Hmelnov, A. Mikhailov (ISDCT SB RAS)

The data accessor classes

m TDataAccessor is the basic class of all the data accessors

m The abstract class TComplexDataAccessor describes the data
accessors for the complex data types. It inherits from the
TDataAccessor and adds the properties [temCount and
Item[AIndex: Integer|: TDataAccessor. The properties allow
to enumerate the data elements, which belong to the complex
data reader

m The system module FmtSys has several concrete classes, inherited
from TComplexDataAccessor, which can be parent classes of
the accessors for record types, selector types and various kinds
of array types

m The data accessors form a tree data structure with the data
reader being the root of the tree

m The access to some sub-items may cause the growth of the tree,
and the programmer can always cut any branch by freeing the
corresponding data accessor

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 13

The main properties of the TDataAccessor class

Member | Type Description

Owner | TComplexDataAccessor | the owner of the data element
(corresponds to the postfix
operator @ in FlexT)

Parent | TComplexDataAccessor | the parent of the data element
(corresponds to the property :@Q
in FlexT)

Reader TComplexDataAccessor | the data reader, to which the data
accessor belong

DP Pointer the address of the data element
Size TOffset the size of the data element

Index Integer the 0-based index of the data
element in the list of subitems
of its Owner

Offset TOffset the offset of the data element in
the file memory

A. Hmelnov, A. Mikhailov (ISDCT SB RAS)

The intermediate code

m encapsulates the features of a general imperative language

m for generation of the data structures we have developed the code library
which makes the representation of the intermediate code evident and close to
the target code

m we use method chaining and open array parameters to make the representation
concise and visually compelling

m all the top-level names declared in the library start with the prefix il - the
abbreviation for the words "imperative language"(or "intermediate language").

m the actual code is generated from the intermediate representation using the
target imperative language specification,

Intermediate code sample

sFldName := CatPrefix (’F’ ,MName) ;
FE := ilFld (sFldName);
ABody := ilBlock (|
ilIf (ilAssigned (FE).UnOp(ilNot)).
ilThen ([ABody, ilLet (FE, FIdExprl)|) ,
ilRet (FE) |) ;

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 15

The intermediate code and the code generated from it

Intermediate code

sFldName := CatPrefix (’F’ ,MName) ;
FE := ilFld (sFldName) ;

ABody := ilBlock (|
ilIf (ilAssigned (FE).UnOp(ilNot)).
ilThen ([ABody, ilLet (FE, FIdExprl)]) ,
ilRet (FE) |) ;

Generated Pascal code

if not Assigned (FPRest) then begin

prev := PTShapeRecDataGrp0 (DP) ;

FPRest := Pointer (TIncPtr(prev)+(4 + SD. Size));
end ;
Result := FPRest;

renerated C-+-+ code

if (!FPRest) {

prev = (PTShapeRecDataGrp0)FDP;

FPRest = (PByteArray) (TIncPtr(prev)+(4+SD()->Size()));
}

return FPRest;

A. Hmelnov, A. Mikhailov (ISDCT SB RAS)

16

Translation of expressions

m The internal evaluation of the FlexT expressions is performed by the functions,
which, besides from computing the expression value itself, return the logical
result — evaluation success or failure.

Example: the array element fetch operation a|i| may fail due to the index i
being out of the array range

m The failure of the FlexT expression evaluation may be nominal situation.
These failures are easily handled by the exc operation and may be used to
concisely write some expressions and avoid additional preliminary checking.
Example: the expression start [#+1] exc count tries to fetch the value
from the array start and, if the element index falls outside the array range,
returns the value count

m Moreover, the exc operation is a part of the FlexT idiom, which is used as an
alternative to the C++ ternary conditional operation:

C++:x>0 7 x: -x FlexT: x when x>0 exc -x

m So, it would be ineffective to always use the structured exception handling of
the modern imperative languages for translation

m We translate expressions into a more complex code, which may sometimes
contain several operators including the conditional ones and use auxiliary
variables for the intermediate values of sub-expressions if necessary

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 17

The code structure of the translated expression

We generate the target language expression, which represents the resulting value and, when it
is required, the intermediate code of the following overall structure:
<External operators >;
|[if <External condition> then begin
[<Operators >;
@OpIntPos:
if <Internal condition >... then begin]
<Internal operators >;
@OpNextOk :
[end]
end]
The generated code, which matches this template, in the order of increasing complexity may
be:
empty - the additional operators are not required
simple sequence of operators — no <External condition> and its if
single if operator after <External operators>
the most general case with the <Internal condition>>. The internal if operator may
be located several levels deeper, inside the other if operators (all them without the else
part, and each nested conditional operator is the last in the operator sequence)

When combining the code fragments for subexpressions of this structure we have shown that
we can obtain the code of this structure again. Le. the set of code fragments corresponding to

the template is closed with respect to the actions performed by the translation function for the

A HmelbieX T ORETAtans. 1 op pas) "

Example of translation of FlexT expression

FlexT specification of polygon/polyline data in Shape file format

TArcData struc
TBBox BBox
long NumParts
long NumPoints
array [@.NumParts] of long Parts
array [@.NumParts] of struc
TXPointThl ((@AQ. Parts [@:#+1] exc @a@Q@. NumPoints) -Q@Q@. Parts [@: #])
T
ends Points
ends

Generated Pascal code, which provides accessor for the field T

function TTArcData_SublAccessor.T: TTXPointTblAccessor;

var
i0: Integer; ndx0O: Integer;
begin
if not Assigned (FT) then begin
ndx0 := Index-+1;

if (ndx0>=0)and (ndx0<TTArcDataAccessor (TTArcData_Sub2Accessor (
Parent).Parent).Parts.Count) then
i0 := TTArcDataAccessor (TTArcData Sub2Accessor(Parent).Parent) .
Parts.Fetch (ndx0)

else
i0 := TTArcDataAccessor (TTArcData_Sub2Accessor(Parent).Parent).
NumPoints;
FT := TTXPointTblAccessor.Create(Self ,0,0,i0 -

TTArcDataAccessor (TTArcData_Sub2Accessor(Parent) . Parent) . Parts.
Fetch (Index)) ;
A. Hmelnov, anMdikhailov (ISDCT SB RAS)

Generation of the test application

m The first thing any programmer will want to do after generation
of a data reader is to test whether it works well

m To perform the test it is required to write some application,
which will use the data reader somehow

m The most obvious and illustrative task here is to print using the
data reader

m After creating manually several test programs of this kind we
have found that the process is rather tedious and that it should
be automated

m So, we have developed the algorithm, which automatically
generates the test code

m The test program generated together with the data reader
allows to immediately check the reader

m Of no less importance is the fact that the source code of the
program demonstrates the main patterns of data access using
the reader

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 20

Test application styles

We have implemented the following two styles of test code
generation:

m For the simple file formats without the recursive data types we
may use the immediate write style

m For the more complex file formats with the recursive data types
we generate the write procedures, which may call each other
recursively if it is required

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 21

Fragments of the test a

std :: unique ptr<TSHPReader> must_free Reader(new TSHPReader(FN));

Reader = must_free Reader.get ();
if (!AssertTShpHeader (Reader->Hdr() ,Reader))
exit (2);

cout<<"Hdr:"<<endl;
cout<<sIndent <<"Magic: "<<Reader->Hdr()->Magic.Value ()<<endl;

cout<<sIndent<<"FileLength: "<<Reader->Hdr()->FileLength.Value ()<<
endl;
cout<<sIndent<<"Ver: "<<Reader->Hdr()->Ver<<endl;

cout<<"Thl: "<<endl;
for (i=0; i<Reader->Tbl()->Count(); i++) {
V = Reader->Tbl()->Fetch(i);
cout<<sIndent<<"["<<i<<"]: "<<endl;
cout<<sIndent <<"RecNo: "<<V->RecNo()<<endl;
cout<<sIndent<<"Len: "<<V->Len()<<endl;
if (!V->Data()->GetAssert ())
exit (2);
cout<<sIndent<<"Data: "<<endl;
cout<<sIndent<<"ST: "<<TShapeTypeToStr(V->Data()->ST())<<endl;
cout<<sIndent <<"SD:"<<endl;
switch ((TShapeRecData Sub0_Case)V->Data()->SD()->hCase()) {
case hcPoint:
cout<<sIndent<<"Point:"<<endl;
cout<<sIndent<<"X: "<<V->Data()->SD()->cPoint ()->X<<endl;
cout<<sIndent<<"Y: "<<V->Data()->SD()->cPoint ()->Y<<endl;
break ;

case hcMultiPointZ:
cout<<sIndent<<"MultiPointZ: "<<endl;

cout<<sIndent<<"Points:"<<endl;
A Hmelnov, A. Miki:@dy (s =5:0rad)L 3 <V->Data ()->SD()->cMultiPointZ ()->A()->Points () 22

Fragments of the test application code in Pascal, procedural style

procedure printTClassFile SubO(const sIndent: String; AV:
TTClassFile _SubOAccessor);
var
i: Integer;
V: TCp_infoAccessor;
begin
for i:=0 to AV.Count-1 do begin
V := AV.Fetch(i);

Writeln (sIndent , [7,1,]:7);
printcp info (sIndent+’ * L,V
end ;

end ;

procedure printTClassFile(const sIndent: String; AV:
TTClassFileAccessor) ;

var
sIndentl: String;

begin
Writeln (sIndent , "minor _version: ’,AV.minor_version);
Writeln (sIndent , major version: ’,AV.major version);
Writeln (sIndent ,’C_pool count: ’,AV.C pool count);
Writeln (sIndent , ’C_pool: ") ; B B
sIndentl := sIndent-+’ 7y

H
printTClassFile SubO(sIndentl ,AV.C pool);

end ;
Reader := TClaReader. Create (FN) ;
try
Writeln (magic: ’,Reader.magic);
Writeln (’Hdr: 7);
printTClassFile (’ > ,Reader .Hdr) ;
finally

A. Hmelnov, A. MikHRigR 4&DCE 58 RAS) 23

Conclusion

m The code generation is performed through the intermediate data structures.
It allows to build the code for various programming languages from the same
source. The currently supported languages are Pascal and C++.

m The current level of capabilities of the code generator is well characterized
by that it have successfully produced a full-featured data reader code for the
well-known for the GIS community Shape file format. The FlexT specification
of the Shape format takes approximately 180 lines of code. The code generator
have produced 1570 lines of the reader code, and 375 lines of the test program.

m The algorithm developed was also used for generation of the data readers for
some custom scientific file formats.

We compared readers generated by Kaitai Struct and FlexT on TUNKA experiment
files. For read only one package from file sized 4 000 000 bytes:

m Kaitai Struct use ~ 6 340 848 bytes

m FlexT use ~ 17 152 bytes

The real size of one package in memory is 8 327 bytes

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 24

Generation of code for reading data from the

declarative file format specifications written in
language FlexT

Alexei Hmelnov, Andrey Mikhailov

Matrosov Institute for System Dynamics and
Control Theory of Siberian Branch of Russian Academy of Sciences
Irkutsk, Russia
http://idstu.irk.ru

November 23, 2018
Moscow
The Ivannikov ISP RAS Open Conference

A. Hmelnov, A. Mikhailov (ISDCT SB RAS) 25

http://idstu.irk.ru

