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 Instability of a displacement front

 Instability of a drop sedimentation
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Motivation
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Motivation

extraction of inclusions from a porous medium

Oil production: 

compact inclusions (c.i.) form 

up to 50% of oil deposits and 

could not be extracted 

Different filtration 

processes

Active Control of 

c.i.

Analysis of  

behavior of c.i.
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Part 1. Numerical simulations drop sedimentation 

in porous medium

Darcy equation:
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Governing equation in dimensionless form:
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Numerical simulations of drop sedimentation 

in porous medium

2 2
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, are dimensionless density and viscosity,
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 , /g cm s   3, /g сm  2,k сm    

Water (1) 0,01 1,0 

Oil (2) 0,015 0,7 
510  0,3 

 

Numerical algorithm:

 Level set method

 Adaptive mesh refinement

 Parallel computing



Level set method
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According the approach two-phase system is 

represented as one media which parameters sharply 

changes across the interface

     Density and viscosity are calculated by distance function: 
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     Calculations were perfumed for axisymmetric drop 
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Adaptive mesh refinement

Parallel computing

It is necessary 

to perform 

calculation with 

fine mesh near 

the interface

MacNeice P., Olson K.M., Mobarry C., Fainchtein R., Packer C. Paramesh: A parallel adaptive mesh 

refinement community toolkit // Computer Physics Communications. 2000. V.126. pp.330-354.

  

 

(a) (b) (c) 

Axisymmetric drop sedimentation : (a) – initial drop shape and blocks of the mesh,  

(b) –  flow function , (c) – distribution of mesh blocks among computation nodes   



Mesh sub-grids

 The computational domain is covered 
with a hierarchy of numerical sub-
grids. 

 All the grid blocks have an identical 
logical structure. (ie the same number 
of grid points in each dimension, the 
same aspect ratios, the same number 
of guard cells, etc ). They are 
assumed to be logically cartesian (or 
structured).



Hierarchy of sub-grids

 The program creates a hierarchy 
of sub-grids to cover the 
computational domain, with spatial 
resolution varying to satisfy the 
demands of the application. 

 These sub-grid blocks form the 
nodes of a tree data-structure.

 These sub-grids are distributed 
amongst the processors.

 PARAMESH uses a block-
structured adaptive mesh 
refinement scheme In block-
structured AMR, the fundamental 
data structure is a block of cells 
arranged in a logically Cartesian 
fashion. ``Logically Cartesian'' 
implies that each cell can be 
specified using a block identifier 
(processor number and local block 
number)

. PARAMESHuses a block-structured adaptive mesh refinement scheme similar to others in the literature (
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PARAMESH was written primarily by Peter MacNeice and Kevin Olson 

at NASA’s Goddard Space Flight center as part of the NASA/ESTO-CT 

project (formally 

MacNeice P., Olson K.M., Mobarry C., Fainchtein R., Packer C. Paramesh: A parallel adaptive 

mesh refinement community toolkit // Computer Physics Communications. 2000. V.126. 

pp.330-354.

The FLASH code is a publicly available high performance 

application code which has evolved into a modular, extensible 

software system from a collection of unconnected legacy codes.

http://flash.uchicago.edu

https://sourceforge.net/projects/paramesh/
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trilinos.org

The Trilinos Project is an effort to develop 

algorithms and enabling technologies 

within an object-oriented software 

framework for the solution of large-scale, 

complex multi-physics engineering and 

scientific problems.

http://www.cs.sandia.gov/CRF/aztec1.html

Aztec is a parallel iterative library for solving 

linear systems, which is both easy-to-use and 

efficient.

Trilinos 12.12 was released in September 2017



Results of computations 

Water drop sedimentation 

in porous medium saturated by oil



Numerical simulations drop sedimentation 

in porous medium
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coarse mesh fine mesh fine meshcoarse mesh

t = 0.25 t = 0.5

1.4  0.67  0.4r 



Emersion of oil drop in water 

Inclusion is instable. Perturbations of interface always grow at the front of 

moving inclusion

t = 0 t = 1.5

1.4  0.67  0.4r 

t = 1
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Governing equations in dimensionless form:
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Part 2. Stability of inclusion under axial vibrations



High-frequency vibration effect on the 

displacement front stability in porous medium
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D. V. Lyubimov and G. A. Sedel’nikov. Effect of Vibration on the Stability of a Plane Displacement 

Front in a Porous Medium. J. Fluid Dynamics, Vol. 41, No. 1, 2006, pp. 3–11.



Finite frequency vibrations effect on the 

displacement front stability in porous medium
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Sedimentation  of water drop in porous medium 

saturated by oil under axial vibrations
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a = 0.2 a = 1a = 0.5

♦ Angular frequency eq. 100 1/c    ♦ Chanel radius is 1 cm     ♦ Drop radius is 0.4 cm 
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Kelvin-Helmholtz instability 

at high vibration intensity 



  

t = 0.3 с. t = 0.65 с. 
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Kelvin-Helmholtz instability 

at high vibration intensity 
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Part 3. Influence of modulated pumping

At upper and lower boundaries vertical component of 
velocity changes according the formula:  
 

cos( )zu V t   

 
V  is dimensionless velocity amplitude  
 is dimensionless  frequency of external modulation. 



Flow function

 

0.02V   



Results

  

a b 

0.01V  , 15t  :  

а - 1  , b - 10  



Drop stabilization under modulated 

pressure gradient
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W = 1000



Part 4. Simulation of droplet sedimentation 

using Buckley-Leverett model
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This equation for pressure is discretized by the finite volume method and is solved

implicitly by the GMRES method with the preconditioning procedure using Aztec.



Dynamics of a drop of more viscous fluid in  

porous medium saturated with less viscous fluid
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t = 0 t = 0.4 t = 1 t = 1.5

2, 1.2  



Motion of a drop of less viscous fluid in porous 

medium saturated with more viscous fluid
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t = 0 t = 1 t = 2 t = 3

0.5, 1.2  



Displacement front dynamics
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Conclusions 

Sedimentation or emersion of inclusion is instable. Perturbations of interface grow

at the front of moving inclusion independently on viscosities values.

Vibrations can suppress short-wave perturbations of the displacement front, that are

known to be most unstable (having the largest growth rate) in the classical non-

vibrating case.

In the presence of weak vertical vibrations, similarly to the non-vibrating case, the

droplet is unstable to small-scale perturbations localized near the front. Stronger

vibrations can suppress the instability entirely.

Further increase of the strength of vibrations leads to another instability, this time

localized at the droplet side.

Numerical simulation of the dynamics of a front in a porous medium, carried out

within the framework of the Buckley-Leverett model, confirmed the presence of

absolute instability of the displacement front in the case that the displacing fluid is

less viscous. It is shown that the horizontal displacement front is stable at any ratio

of viscosities in case the displacing fluid is less dense.



If the density of the displacing fluid is greater than that displaced, then the

horizontal displacement front is unstable, and the dynamics of the system

depend on the ratio of the viscosities of the fluids.

In the case when the displacing fluid is more viscous, an instability develops

similar to that previously observed in modeling the movement of a thin

displacement front.

If the viscosity of the displacing fluid is less than that displaced, then the

instability is associated with increase in the thickness of the displacement

front. However, this secondary thin displacement front appear having smaller

jump in the saturation of the media. The magnitude of the jump in saturation

depends on the ratio of viscosities. The dynamics of the secondary front is

similar to that observed in the case when the displacing fluid is more viscous.

30

Conclusions 


