Pruning ELF: Size Optimization of Dynamic
Shared Objects at Post-link Time

Vladislav Ivanishin Evgeny Kudryashov Alexander Monakov
Dmitry Melnik Jehyung Lee

ISPYH

November 22, 2018

1/20

Problem Statement

Given: a distribution with shared libraries, immutable once it’s built
(i.e. no package manager).

Slim it down by eliminating unused code/data

2/20

Problem Statement

Given: a distribution with shared libraries, immutable once it’s built
(i.e. no package manager).

Slim it down by eliminating unused code/data

assuming “closed world” full-distro rebuilds

> No packages bypass the toolchain we control
» Nothing is added afterwards; no “potential future uses”

3/20

Aside: Elimination in Static Linking

For static linking, already available in practice:

1. Compile with gcc -ffunction-sections
-fdata-sections:

Per-function sections

.section .text.foo,"ax",@progbits
.globl foo
.type foo, @function
foo:
movl $42, %eax
ret

2. Link with --gc-sections
Linker omits sections not reachable by relocations from the entry
point

4/20

--gc-sections for Dynamic Modules

Can we use --gc-sections for shared libraries?
For dynamic linking, entrypoint is not the only GC root
» The .dynamic section is another root
Points to dynamic symbols and global library
constructors/destructors

> Most code is reachable from dynamic symbols (the library’s
interface)

> Reducing the API surface (changing symbol’s visibility to
“hidden”) allows GC

5/20

Dependency Types

Want to compute reachability on dynamic symbol set

> Link-time dependencies

Direct Call

. . a.out libc.so
znt main() ‘ ain J_L puts
puts("Hello World");

}

6/20

Dependency Types

Want to compute reachability on dynamic symbol set
> Link-time dependencies
» Run-time dependencies via d1sym()

Dynamic d1sym Lookup

#include <dlfcn.h>

a.out libc.so

void *dlsym(void *handle,
const char *name);

-> malloc

malloc
void malloc(size_t n)
{

libdl.so
dlsym
void *real_malloc =

dlsym(RTLD_NEXT, "malloc");

7120

Dependency Types

Want to compute reachability on dynamic symbol set
> Link-time dependencies « this talk only covers this kind
> Run-time dependencies via d1sym() « described in [1]

» Other run-time dependencies « only manual annotation

8/20

High-level Approach

1. Record link-time dependencies (requires whole system rebuild)
2. Analyze system-wide symbol dependency graph

3. Eliminate unused symbols (another whole system rebuild)

9/20

Recording Link-time Dependencies

Use LTO plugin interface for introspection

The claim_file_handler API hook allows to inspect object files
and extract necessary info

10/20

Analyzing System-wide Dependency Graph

> stand-alone tool
> takes dependencies collected at the previous step from all links

> merges them into one global graph
V = {sections and symbols}, E = {relocations and definitions}

> traverses it from entry points

11/20

Eliminating Unused Symbols, Prior Approach

Idea: eliminate at link time. Compared to compile-time:
> Required: arbitrary source language
» Elimination on per-DSO basis
Implementation:
1. Force-enable --gc-sections
2. Set hidden visibility on eliminated symbols. Tried 2 methods:

> Linker plugin claims the input . o files and adds their copies with
adjusted visibility info to the link (via add_input_£file)
> Auxiliary .o file with references to convey visibility info

12/20

Eliminating Unused Symbols, Prior Approach: Problems

» Probing done by configure scripts—have to be conservative
» configure divergence is hard to track and not user-friendly

» Various linker bugs (plugin APl and --gc-sections in combo
with visibility rules are not among the best tested features)

13/20

Eliminating Unused Symbols, New Approach

Idea: binary post-processing

» Divide loadable segments into used/unused, chop off the tails
(This requires link-time section reordering—e.g. with a plugin)

> Regenerate associated tables

Cross-segment references are fine, because virtual addresses are not
modified.

14/20

Eliminating Unused Symbols, New Approach

code segment

hg;zer .init .text fini .data
. J
PT_LOAD PT_LOAD
code segment data segment
h:;Zer dnit | fini .text .data
- J Y
PT_LOAD PT_LOAD
code segment data segment
heEaLger nit | fini .text.used .text.unused .data
J
PT_LOAD PT_LOAD

data segment

15/20

Eliminating Unused Symbols, New Approach

: N x 4KiB

code segment

data segment

ELF
header nit | fini .text.used .data
~ S
PT_LOAD PT_LOAD
code segment data segment
: N x 4KiB ;
BT | | sexasen I i
~ S
PT_LOAD PT_LOAD
code segment data segment
h?&;zer .init fini .text.used I .data
~ S
PT_LOAD PT_LOAD

16/20

Eliminating Unused Symbols, New Approach

4K problem mitigation:
.text.used [.text.unused .data.unused] .data.used
Tables:

»> _.hash, .dynsym: regenerate
> .dynstr: regenerate (suffix merging)

> .got, .plt: leaving works but wastes space, regenerating is
problematic due to resolved references and the 4K problem

Most of the tables can be emitted to a separate segment.

17/20

Eliminating Unused Symbols, New Approach

Pros:

> Dbetter reproducibility: configure tests at step 3 will probe
unmodified (modulo reordering) binaries, same as at step 1

> potential to eliminate more: no need to consider mains of
configure tests as roots for reachability analysis

» doesn’t suffer from any linker bugs (related to --gc-sections,
versioned symbols, or plugin APl implementation)
Cons/limitations:

> requires LDPT_UPDATE_SECTION_ORDER plugin interface which
is only implemented in Gold

> and a small patch for Gold (move ORDER_FINI, ORDER_EHFRAME
above ORDER_TEXT)

» hard to regenerate and shrink .dynstr, .plt (and references to
them), and hash tables (not done in our PoC implementation)

> 4K alignment overhead (missed optimization) per DSO

18/20

The Code

This project is free software and is available from
https://github.com/ispras/libosuction

(branch vlad/segshrink-ve6)

19/20

https://github.com/ispras/libosuction

Bibliography

ﬁ V. lvanishin, E. Kudryashov, A. Monakov, D. Melnik, and J. Lee.
System-wide elimination of unreferenced code and data in
dynamically linked programs.

In 2017 Ivannikov ISPRAS Open Conference (ISPRAS).

ﬁ V. Ivanishin, E. Kudryashov, A. Monakov, D. Melnik, and J. Lee.
Pruning ELF: Size optimization of dynamic shared objects at
post-link time.

@ (Ab)using LTO plugin API for system-wide shrinking of dynamic
libraries.

GNU Tools Cauldron 2018.

ﬁ lan Lance Taylor.
Linkers.
https://lwn.net/Articles/276782/.

ﬁ WHOPR driver design.
https://gcc.gnu.org/wiki/whopr/driver.

20/20

https://lwn.net/Articles/276782/
https://gcc.gnu.org/wiki/whopr/driver

