The Approach to Managing Provenance Metadata and Data Access Rights in Distributed Storage Using the Hyperledger Blockchain Platform

A. Demichev, A. Kryukov and N. Prikhod’ko

SINP MSU

Novgorod State University

Supported by RSF grant No. 18-11-00075
Provenance Metadata (PMD)

- Metadata describing data, provide context and are vital for accurate interpretation and use of data
- One of the most important types of metadata is provenance metadata (PMD)
 - tracking the stages at which data were obtained
 - ensuring their correct storage, reproduction and interpreting
 - ensures the correctness of scientific results obtained on the basis of data
- The need for PMD is especially essential when large volume (big) data are jointly processed by several research teams
Examples of Large Experiments and Distributed Storages: WLCG (1/2)

• The Worldwide LHC Computing Grid (WLCG)
 • It was designed by CERN to handle the prodigious volume of data produced by Large Hadron Collider (LHC) experiments in high-energy (elementary particle) physics
 - approximately 25 petabytes per year
 • an international collaborative project
 • grid-based computer network infrastructure incorporating over 170 computing/storage centers in 36 countries
Examples of Large Experiments and Distributed Storages: WLCG (2/2)

• time of active work of LHC ⇒ generation of big scientific data, is several tens of years, and the processing time of the data will be at least twice as much

• without detailed and correct PMD comparing the results obtained with an interval, for example, in a few years, will be simply impossible
Examples of Large Experiments and Distributed Storages: Astrophysics

- While 10--15 years ago there were 1--10 Tb of data per year in astrophysics, new experimental facilities generate data sets ranging in size from 100's to 1000's of terabytes per year.

Types of storages: extremal cases

- Centralized
 - problems:
 - very expensive ⇒ funding ?
 - planning in advance the necessary storage capacity

- P2P-storage with special mechanisms of coding, fragmentation and distribution
 - problems:
 - to ensure a stable pool of resource providers,
 - before such a P2P-based storage can work stably, it requires significant technical, organizational and time costs in the absence of a result guarantee
Types of storages: intermediate solution

• organizations participating in a large project
 • integrate their local storage resources into a unified distributed pool
 • if necessary, rent in addition cloud storage resources, perhaps from multiple providers.
• may be particularly advantageous
 • if there is a need to store large amounts of data for a limited duration of a project
 • in a situation where the project brings together many organizationally unrelated participants
• ⇒ dynamically changing distributed environment
PMD MS Construction: Distributed Solution

- distributed environment \Rightarrow distributed registry for PMD
- we suggested to use the blockchain technology which provides
 - that no records were inserted into the registry in hindsight
 - no entries were changed in the registry
 - the registry has never been damaged or branched
 - monitoring and restoring the complete history of data processing and analysis
PMD MS Construction: Which Blockchain (1/2)

- type of the blockchains
 - permissionless blockchains, in which there are no restrictions on the transaction handlers
 - permissioned blockchains, in which transaction processing is performed by specified entities

- permissionless:
 - algorithms are based on
 - Proof-of-Work – highly resource-consuming, probability of reaching a consensus, which grows with time elapsing, ...
 - Proof-of-Stake – Nothing-at-Stake problem,…
 - suitable for open (public) networks of participants (Bitcoin, etc.)
PMD MS Construction: Which Blockchain (2/2)

- Permissioned:
 - there is a fixed number of trusted transaction/block handlers
 - from different administrative domains
 - the handlers must come to a **consensus** about the content and the order of the recorded transactions
 - distributed consensus algorithm should be involved
 - form a more controlled and predictable environment than permissionless blockchains
 - suitable for networks with naturally existing trusted parties
 - **our case**: DMS, data owners,...
System state

- The state of the entire distributed storage = aggregated state of the set of files stored in it with their states at the moment
- The state of a data file is determined by PMD:
 - global ID + attributes, including:
 - local file name in a storage: fileName;
 - storage identifier: storageID;
 - creator identifier: creatorID;
 - owner identifier: ownerID
 - type: type=primary/secondary/replica
 - ...
Basic operations ⇒ transactions

- new file upload
- file download
- file deletion
- file copy
- copying a file to another repository
- transferring a file to another repository
 - each active transaction ⇒ update of some state attributes
 - for example, after the transaction "file download" the values of the keys change: "number of file downloads" and "users who downloaded the file".
HyperLedger Fabric (1/2)

- Analysis of existing platforms shows that the formulated problems most naturally can be solved on the basis of the
 - Hyperledger Fabric blockchain platform (HLF; www.hyperledger.org)
 - together with Hyperledger Composer (HLC; hyperledger.github.io/composer) = set of tools for simplified use of blockchains
- permissioned blockchains
 - transactions are processed by a certain list of trusted network members
Business process within (HLF&C)-platform

• **Assets** are tangible or intellectual resources, records of which are kept in registers
 • in our case, the assets are data files; their properties (attributes) are provenance metadata

• **Participants** are members of the business network.
 • they can own assets and make transaction requests
 • can have any properties if necessary

• **Transaction** is the mechanism of interaction of participants with assets

• **Events**: messages can be sent by transaction processors to inform external components of changes in the blockchain
HyperLedger Fabric → ProvHL (1/3)

- ProvHL = Provenance HyperLedger
 - status: Proof of concept
 - operation of smart contracts (chaincodes)
 - sophisticated adaptation of HLF for the business process of sharing storage resources
- provides a record of transactions & advanced query tools
- advanced means for managing access rights
 - access rights can be managed by network members within their competence
HyperLedger Fabric \rightarrow ProvHL (2/3)

- Participants
 - Person
 - StorageProvider
- Assets
 - File
 - Storage
 - Operation
 - Group

- Transactions
 - FileAccessGrant
 - FileAccessRevoke
 - OperationUploadCreate
 - OperationUploadSetState
 - ...
HyperLedger Fabric → ProvHL (3/3)

• thanks to its modular structure, it allows using different algorithms to reach consensus between business process participants
• has a developed built-in security system based on PKI
ProvHL operation (1/3)

Simplified scheme for recording transactions with provenance metadata and managing data access rights based on HLF&C

 ProvHL operation (2/3)

- Operations with files comprise of two types of transactions recorded in the blockchain:
 - first corresponds to client requests,
 - second corresponds to server responses

- Operation states
 - STARTED
 - PENDING
 - COMPLETED
 - ERROR
ProvHL operation (3/3)

- Example - "new file upload" transaction:
 - a new asset — a data file — with the "temporary" label is first recorded in the blockchain
 - only after the actual upload of the file in the storage, DMS initiates a transaction removing the label "temporary" and turns the uploaded file into a fully valid asset.
 - Together with the splitting of transactions into the client and server parts ⇒ level of correspondence (history recorded in blockchain) ⇔ (real history of the data in the distributed storage) practically acceptable.
ProvHL Testbed (1/2)

- At present, a testbed has been created on the basis of the SINP MSU
 - a preliminary version of the ProvHL prototype was deployed to implement the developed principles and refine the algorithms of the system
 - a trivial consensus algorithm is currently used (centralized orderer Solo in the terminology of HLF).
 - full-fledged Byzantine fault tolerant consensus algorithms is under implementation
 - PBFT
ProvHL Testbed (2/2)
Conclusion

- The new approach to managing PMD and data access rights in distributed storage has been developed