
Tail chain - a new 

generation blockchain

for parallel processing

Mikhail P. Levin, Nikolay Pakulin, Andrey Tapekhin

Pax Datatech & Ivannikov Institute of System Programming RAS,

Mikhail_Levin@hotmail.com; Mikhail_Levin@paxdatatech.com

Nikolay@paxdatatech.com, a.tapekhin@ispras.ru



Introduction

 Starting from 2008 blockchain technologies are widely and intensive developed over 

the world 

 Now a days there are a lot of various variants of this technology were developed. But 

in principle all these variants are concerned around Bitcoin and Ethereum platforms 

 In these platforms transactions flow comprises the following steps: 

a) New transactions are propagated and advertised to all nodes

b) Every miner node collects new transactions into a block

c) Nodes look for proof of work 

d) When a node finds a proof of work, it broadcast the block to all other nodes

e) Nodes accept the block only if all transactions in it are valid and not already spent

f) Nodes accept the block by working on creative the next block in the chain, using hash of the 

accepted block as previous hash



State of Art

 Blockchain clients create 

contracts and generate 

transactions TS 

 These transactions are 

collected by any 

specified miner node 

into the block of 

transaction (see: Block 

generation element) 

 When the block of 

transaction is 

completed, it is sent to 

any selected set of 

miners for proofing (see: 

Block mining element) 

In general, transaction flow 

processes can be presented 

by the following scheme

Bottle necks: only one 

node at a time 

constructs a block 

(both in PoW and PoS)

 In the last operation should 

be two cases. 

 One is: the block is good, 

then this block is added to 

the blockchain. 

 Another is: the block is 

bad, in this it drop out 

and does not add to the 

blockchain



State of Art

 Blockchain clients create 

contracts and generate 

transactions TS 

 These transactions are 

collected by any 

specified miner node 

into the block of 

transaction (see: Block 

generation element) 

 When the block of 

transaction is 

completed, it is sent to 

any selected set of 

miners for proofing (see: 

Block mining element) 

In general, transaction flow 

processes can be presented 

by the following scheme

Bottle necks: only one 

node at a time 

constructs a block 

(both in PoW and PoS)

 In the last operation should 

be two cases. 

 One is: the block is good, 

then this block is added to 

the blockchain. 

 Another is: the block is 

bad, in this it drop out 

and does not add to the 

blockchain



 Structure of blocks in nowadays blockchain

 Two bottlenecks:

 one is when the current block is generated, 

because before the block is not completed we 

could not send it to the next stage 

 The second bottleneck is on the mining stage. On 

this stage a few mines should take part in the 

block proofing with respect to the choosing 

algorithm of proofing (Proof of Work, Proof of 

Stake (PoS), Proof of Elapsed Time and some 

others)

 All proofing results of miners participated in 

proofing are accumulated on one miner node 

there the final solution is done

 These two above mentioned bottlenecks 

seriously restricted performance of mining 

process

State of Art



Tail chain idea
• Transaction scheduling is performed by distributed process

Add a new role – Transaction Dispatcher

Transaction Dispatcher forms a transaction set for Block Generation

Each node in the network might be both Block Generator (Miner or Minter) and Transaction 

Dispatcher

• After forming a 

transaction set 

Transaction Dispatcher 

is re-elected by a PoS

algorithm (or other 

pseudo-random 

selection strategy)

• Formed transaction 

set is distributed as a 

message to all nodes 

in the network

• The next Transaction 

Dispatcher forms a set 

that has zero 

intersection with this 

one (each transaction 

must appear in a 

single transaction set)

• When Block Generator (selected by PoS algorithm) receives a transaction set message 

• it mints the transactions from the set into a block 

• Forming Transaction Set is much faster than generating a block

• Therefore multiple transaction sets could be minted at the same time



Structure of Tail chain 

• Tail chain graph always has a main stream and 

we open a new stream only then a main stream 

is busy

• Then the main stream is not busy and waiting a 

new block, then we closed all peripheral 

streams in Tail chain graph. By such way we 

avoid an unlimited growth of streams in Tail 

chain graph

• We should define a maximal number of streams 

in Tail chain graph and close all peripheral 

streams then this number is achieved (this of 

course can decrease performance just a little)

• Let us note that the proposed process requires 

Proof-of-Stake or similar validation algorithm 

and does not work with Proof-of-Work.

Structure of blocks in Tail chain



Performance Estimation 

 Almost unlimited scaling

 Requires Proof-of-Stake or similar

 Does not work with Proof-of-Work

This work was supported by the Minobrnauki Russia (grant id

RFMEFI60417X0199, grant number 14.604.21.0199)



Thanks for attention!


